Abstract
Social media has evolved into a prominent public space for virtual criticism, particularly on platforms like Twitter, facilitated by widespread smartphone usage. Netizens utilize Twitter as an effective communication channel due to its accessibility and vast reach. This study focuses on sentiment analysis of comments from the public on Twitter, aiming to expedite the acquisition of accurate information about the general sentiment towards JNE (a logistics company). The K-Nearest Neighbor (KNN) classifier is employed, employing the TF-IDF weighting method to classify Indonesian language comments and assess the achieved accuracy.
Highlights:
- Study focused on sentiment analysis of Twitter comments concerning JNE services using the K-Nearest Neighbor (KNN) method with Indonesian language text.
- Employed the TF-IDF weighting to classify comments and achieved an impressive 90% accuracy in sentiment analysis.
- The obtained classification proves valuable in evaluating public perception of JNE's services based on feedback from the social media community on Twitter.
References
S. Paleon, H. Harcici, and Y. Septian, “Pengiriman Kargo Untuk Mendukung Transaksi Pengiriman Barang Untuk Peningkatan Transaksi Biaya Pengiriman Lebih Efisien,” db, vol. 1, no. 1, pp. 7–14, May 2020, doi: 10.46484/db.v1i1.189.
M. Christin and L. Rahayu, “Kritik Sosial Pada Media Sosial (Analisis Semiotika Pada Youtube ‘TV, Jasamu Tiada…’),” J-IKA : Jurnal Ilmu Komunikasi Fakultas Ilmu Komunikasi Universitas BSI Bandung, vol. 4, no. 1, pp. 36–46, Apr. 2017, doi: 10.31294/kom.v4i1.1789.
F. A. Prasetyo, “Analisis Perbandingan Service Quality Antara JNE dan J&T Ekpress,” Journal:eArticle, Petra Christian University, 2017.
“JNE,” Wikipedia bahasa Indonesia, ensiklopedia bebas. Jul. 20, 2023. Accessed: Jul. 25, 2023. [Online]. Available: https://id.wikipedia.org/w/index.php?title=JNE&oldid=23878471.
A. Fadly, “Evaluative Language in the Discourse of Cebong Vs Kampret (‘Tadpole Vs Microbats') on Twitter,” Bahtera, vol. 19, no. 1, pp. 1–14, Jan. 2020, doi: 10.21009/bahtera.191.01.
M. A. Ramdhani and O. N. Rahim, “Analisis sentimen untuk mengukur popularitas tokoh publik berdasar data pada media sosial twitter menggunakan algoritma data mining dengan teknik klasifikasi,” Informasi, vol. VI, no. 2, pp. 1–15, 2014.
E. Helmud, “Optimasi Basis Data Oracle Menggunakan Complex View Studi Kasus : PT. Berkat Optimis Sejahtera (PT.BOS) Pangkalpinang,” J. Informanika, vol. 7, no. 1, pp. 80–86, 2021.
F. F. Mailoa, “Analisis Sentimen Data Twitter Menggunakan Metode Text Mining Tentang Masalah Obesitas di Indonesia,” JISPH, vol. 6, no. 1, pp. 44–51, 2021, doi: 10.22146/jisph.44455.
M. Romzi and B. Kurniawan, “Pembelajaran Pemrograman Python Dengan Pendekatan Logika Algoritma,” JTIM J. Tek. Inform. Mahakarya, vol. 03, no. 2, pp. 37–44, 2020.
H. Hartanto, “Text mining dan sentimen analisis twitter,” J. Psikol. Ilm., vol. 9, no. 1, pp. 18–25, 2017.
A. Firdaus and W. I. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi : (Sebuah Ulasan),” J. JUPITER, vol. 13, no. 1, p. 66, 2021.
This work is licensed under a Creative Commons Attribution 4.0 International License.