Airflow Pattern Simulation in Open Type Wind Tunnel with Test Section 40 cm X 40 cm X 80 cm
View Article
Suplementary File

Supplementary Files

Similarity Check Result

Keywords

Wind Tunnel
Software
RPM
Inlet Velocity
Anemometer
Dimmer

How to Cite

Fakhruhrozi, A. J., & Mulyadi, M. (2021). Airflow Pattern Simulation in Open Type Wind Tunnel with Test Section 40 cm X 40 cm X 80 cm. Indonesian Journal of Innovation Studies, 13, 10.21070/ijins.v13i.533. https://doi.org/10.21070/ijins.v13i.533

Abstract

This study aims to determine the pattern of wind flow in the open type wind tunnel and compare actual measurements and simulation results with software. The actual method used is testing using a wind tunnel, anemometer, dimmer, axial suction fan with parameters RPM 615, 1932, 2400,2860, and the simulation used using solidwork flow simulation software with parameters Inlet Velocity 1.4 m/s, 2.6 m /s, 3.9 m/s, 4.2 m/s. From the results of the study, it was found that the velocity of the air flowing through the wind tunnel channel obtained the largest value of 14.05 m/s and the smallest value of 0.5 m/s. has a different speed in each section which is influenced by the shape and dimensions of each section. in each section if the velocity is low the flow pattern is laminar, if the velocity is medium the flow pattern is transitional and if the velocity is high the flow pattern is turbulent. And the results of the comparison of actual and simulated velocity occur in the form of a similar flow pattern

https://doi.org/10.21070/ijins.v13i.533
View Article
Suplementary File

References

P. B. Surya and A. G. Wailanduw, “Pengaruh Variasi Screen terhadap Intensitas Turbulensi Wind Tunnel Tipe Open Circuit Subsonic di Jurusan Teknik Mesin Unesa,” J. Tek. Mesin, vol. 3, pp. 29–37, 2014.

S. U. Handayani, “Pengembangan dan analisa keseragaman aliran terowongan angin tipe terbuka sebagai sarana pengujian aerodinamika,” Semin. Nas. Politek. Negeri Semarang, PNES II, pp. 309–314, 2014.

Subagyo, M. Muflih, and dan A. Y. Atmojo, “MENGGUNAKAN FASILITAS TEROWONGAN ANGIN Data acquisition system of wind turbine power performance testing by using Wind Tunnel Facilities,” J. Stand., vol. 17, pp. 129–136, 2015.

N. Risnawan, F. A. Yohanes, and A. S. K, “KONSISTENSI DAN AKURASI DATA HASIL PENGUKURAN PADA PENGUJIAN AERODINAMIKA MODEL PESAWAT JENIS PENUMPANG SIPIL (AIRLINER) DI WIND TUNNEL BBTA3-BPPT,” ejurnal2.bppt.go.id, vol. 2, p. 2018, 2018, [Online]. Available: http://ejurnal2.bppt.go.id/index.php/JAERO/article/view/3816/3168.

Muchammad, “ANALISIS MOMEN POROS DAN GAYA SAMPING HORN RUDDER BIDANG KENDALI PESAWAT N-XXX MENGGUNAKAN COMPUTATIONAL FLUID DYNAMIC,” Momentum, vol. 15, no. 1, pp. 64–69, 2019.

I. M. Idris, “RANCANG BANGUN TEROWONGAN ANGIN (WIND TUNNEL) TIPE SUBSONIC DENGAN TEST SECTION 0, 2 X 0, 2 M UNTUK ALAT PERAGA MEKANIKA FLUIDA,” Mechonversio Mech. Eng. J., vol. 2, no. 2, pp. 19–24, 2019.

F. F. Junaidi, “Analisis distribusi kecepatan aliran sungai musi (ruas jembatan ampera sampai dengan pulau kemaro).” Sriwijaya University, 2014.

Y. R. Fauzi, “Pengaruh Penambahan Turbocyclone Aksial Terhadap Aliran dan Performa Motor Bakar,” Turbo J. Progr. Stud. Tek. Mesin, vol. 7, no. 1, pp. 25–31, 2018.

F. A. Naser and M. T. Rashid, “Effect of Reynold Number and Angle of Attack on the Hydrodynamic Forces Generated from A Bionic Concave Pectoral Fins,” IOP Conf. Ser. Mater. Sci. Eng., vol. 745, no. 1, 2020, doi: 10.1088/1757-899X/745/1/012026.

J. Tu, G. H. Yeoh, and C. Liu, Computational fluid dynamics: a practical approach. Butterworth-Heinemann, 2018.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...