Abstract
Query co-processing on graphics processors (GPUs) has become an effective means to improve the performance of main memory databases. However, this co-processing requires the data transfer between the main memory and the GPU memory via a lowbandwidth PCI-E bus. The overhead of such data transfer becomes an important factor, even a bottleneck, for query co-processing performance on the GPU. In this paper, we propose to use compression to alleviate this performance problem.
References
N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A memory model for scientiļ¬c algorithms on graphics processors. In Supercomputing, 2006.
N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast computation of database operations using graphics processors. In SIGMOD, 2004.
B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational query co-processing on graphics processors. In TODS, 2009.
D. Abadi, S. Madden, and M. Ferreira. Integrating compression and execution in column-oriented database systems. In SIGMOD, 2006.
D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs. row-stores: how different are they really? In SIGMOD,2008.
P. Boncz, M. Zukowski, and N. Nes. Monetdb/x100:Hyper-pipelining query execution. In CIDR, 2005.
M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalarRAM-CPU cache compression. In ICDE, 2006.
N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha. Gputerasort: High performance graphics coprocessor sorting for large database management. In SIGMOD, 2006.
B. He, K. Yang, R. Fang, M. Lu, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational joins on graphics processors. In SIGMOD, 2008.
C. Binnig, S. Hildenbrand, and F. Faerber. Dictionary-based order-preserving string compression for main memory column stores. In SIGMOD, 2009.
This work is licensed under a Creative Commons Attribution 4.0 International License.