Abstract
This research is based on late payment data from UD Delta customers which affect all production processes that occur in UD Delta. The purpose of this study is to predict the character of the customer as a basis for analyzing the delay in the payment process that hinders the company's production. The datasets tested were 30% of the 600 data, which were divided into 1 id, 7 attributes and for the prediction classes 'No Problem', 'Slightly Problematic', and 'Very Problematic'. This study collects data by means of non-participant observation, namely data on UD Delta's bookkeeping. The process stage is processed using the python programming language with classification methods and naive bayes algorithms. The results obtained from this study are in the form of calculations that state the number of customers grouped into 3 categories, namely with correct predictions as much as 51%, incorrect predictions as much as 49%. From the results obtained, it will be taken into consideration by the company in processing the existing processes within the company as a step to develop the business carried out so that it is more optimal.
References
Miranda, E. (2018). Data Mining Dengan Metode Klasifikasi Naïve Bayes Untuk Mengklasifikasikan Pelanggan. Infotech: Journal of Technology Information, 4(1), 6–12. https://doi.org/10.37365/it.v4i1.7
Siska, Y. (2019). Penerapan Data Mining Dengan Algoritma Naïve Bayes Pelanggan Terhadap Pelayanan Servis Mobil ( Studi Kasus : Katamso Service ). 14, 195–199.
Jiawei, Han, Micheline, K. (n.d.). Konsep dan Teknik Data Mining Data Preprocessing. Buku.
Topics, U. (2007). Principles of Data Mining. In Principles of Data Mining. https://doi.org/10.1007/978-1-84628-766-4
Bash, E. (2015). Python Programming for the Absolute Beginner. In PhD Proposal (Vol. 1).
Riza, & Irsan. (2013). Pengenalan HTML, CSS, dan Javascript.
Ii, B. A. B. (2005). Data Mining Data mining. Mining of Massive Datasets, 2(January 2013), 5–20. https://www.cambridge.org/core/product/identifier/CBO9781139s058452A007/type/book_part preprocessing millenial 2. (n.d.).
Mita, S., Yamazoe, Y., Kamataki, T., & Kato, R. (1981). Metabolic activation of a tryptophan pyrolysis product, 3-amino-1-methyl-5H-pyrido[4,3-b]indole(Trp-P-2) by isolated rat liver nuclei. In Cancer Letters (Vol. 14, Issue 3). https://doi.org/10.1016/0304-3835(81)90152-X
Egziabher, T. B. G., & Edwards, S. (2013). Pedoman Penulisan Abstrak Dan Artikel Young Public Health Award Kategori Hasil Penelitian Bidang Kesehatan Masyarakat Indonesian Public Health Perspective Series (Iphps) 2016. Africa’s Potential for the Ecological Intensification of Agriculture, 53(9), 1689–1699.
Gaikwad, S. S., & Adkar, P. (2019). A Review Paper on Bootstrap Framework. Ire, 2(10), 349–351.
Raharjo, Budi. 2017. Belajar Otodidak Flask (Framework Python untuk Pengembangan Aplikasi WEB). Bandung : Informatika Bandung
Raharjo, Budi. 2019. Mudah Belajar Python untuk Aplikasi Desktop dan WEB. Bandung : Informatika Bandung
Ratnawati, F. (2018). Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter. INOVTEK Polbeng - Seri Informatika, 3(1), 50. https://doi.org/10.35314/isi.v3i1.335
Fitriani, A. S. (2019). Penerapan Data Mining Menggunakan Metode Klasifikasi Naïve Bayes untuk Memprediksi Partisipasi Pemilihan Gubernur. JTAM (Jurnal Teori Dan Aplikasi Matematika), 3(2), 98–104.
Yuniarti, W. D., Faiz, A. N., & Setiawan, B. (2020). Identifikasi Potensi Keberhasilan Studi Menggunakan Naïve Bayes Classifier. Walisongo Journal of Information Technology, 2(1), 1. https://doi.org/10.21580/wjit.2020.2.1.5204
This work is licensed under a Creative Commons Attribution 4.0 International License.