Agung Nugroho (1), Chaerul Umam (2)
General Background: The rapid growth of information technology has increased the complexity of cyber threats, with malware attacks posing significant risks to computer systems, particularly those based on the Windows operating system. Specific Background: Portable Executable files contain structured statistical attributes that can be utilized to distinguish malware from benign software using machine learning techniques. Knowledge Gap: Despite extensive use of machine learning in malware detection, comparative evidence using identical Portable Executable statistical features and consistent evaluation settings remains limited. Aims: This study aims to compare the classification performance of Random Forest and Neural Network models in malware detection based on Portable Executable statistical features. Results: Using the ClaMP Integrated Dataset comprising 5,184 samples and 70 static features, Random Forest achieved an accuracy, precision, recall, and F1-score of 99.14%, while the Neural Network obtained consistent scores of 98.18% across all evaluation metrics. Novelty: This research presents a direct and controlled comparison of ensemble and neural-based classifiers using identical preprocessing pipelines, default model configurations, and balanced Portable Executable datasets. Implications: The findings demonstrate that ensemble-based approaches provide stable and reliable performance for Portable Executable malware classification and offer a practical foundation for automated machine learning–based cybersecurity systems.
• Random Forest Achieved The Highest Classification Scores Across All Metrics• Portable Executable Statistical Features Provided Clear Malware Separation• Ensemble Learning Demonstrated Strong Stability On Structured PE Data
Malware Detection; Portable Executable; Random Forest; Neural Network; Machine Learning
A. Mello, V. G. Lemos, F. Barbosa, and E. Simoni, “Malware identification on Portable Executable files using Opcodes Sequence,” in Anais do XVI Congresso Brasileiro de Inteligência Computacional, SBIC, Dec. 2023, pp. 1–8. doi: 10.21528/CBIC2023-006.
D. Efriyani and F. Panjaitan, “Klasifikasi Malware dengan Menggunakan Recurrent Neural Network,” jurnalmatrik, vol. 23, no. 3, pp. 310–316, Dec. 2021, doi: 10.33557/jurnalmatrik.v23i3.1592.
M. Pietrek, “An In-Depth Look into the Win32 Portable Executable File Format, Part 2,” MSDM Megazine Inside Windows, pp. 1–10, 2002.
V. Kumar and A. Agarwal, “Circular Quorum Systems for Write Dominant Data Replication Protocols under Serial Isolation Using Quorum Consensus Approach,” Procedia Computer Science, vol. 46, pp. 867–875, 2015, doi: 10.1016/j.procs.2015.02.156.
L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324.
C. Hukubun, Abdurrokhim, Y. A. Sendjaja, and W. G. Hukubun, “Litofasies Dan Lingkungan Pengendapan Pada Formasi Elat, Kecamatan Kei Besar, KabupatenM Maluku Tenggara, Maluku,” JURNAL GEOLOGI KELAUTAN, vol. 20, no. 1, pp. 1–14, June 2022, doi: 10.32693/jgk.20.1.2022.759.
Sugiyono, Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: Alfabeta, 2020.
M. S. Akhtar and T. Feng, “Evaluation of Machine Learning Algorithms for Malware Detection,” Sensors, vol. 23, no. 2, p. 946, Jan. 2023, doi: 10.3390/s23020946.
P. T. Noi and M. Kappas, “Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery,” Sensors, vol. 18, no. 1, p. 18, Dec. 2017, doi: 10.3390/s18010018.
J. N. Makapuan and R. C. Rohmana, “Prediksi Elektrofasies Berdasarkan Data Log Sumur pada Formasi Huggin: Studi Kasus Menggunakan Algoritma Random Forrest dan Multi-Layer Perceptron,” Jurnal Teknik & Teknologi Terapan, vol. 3, no. 1, pp. 1–12, 2025, doi: https://doi.org/10.47970/jttt.v3i1.863.
H. Babbar, S. Rani, D. K. Sah, S. A. AlQahtani, and A. Kashif Bashir, “Detection of Android Malware in the Internet of Things through the K-Nearest Neighbor Algorithm,” Sensors, vol. 23, no. 16, p. 7256, Aug. 2023, doi: 10.3390/s23167256.
M. Hamir and P. Nurtantio Andono, “Model Neural Network untuk Memprediksi Tingkat Kemenangan Berdasarkan Draft Pick Mobile Legends,” Jurnal Pendidikan dan Teknologi Indonesia, vol. 5, no. 4, pp. 899–908, Apr. 2025, doi: 10.52436/1.jpti.723.
D. A. Fitri and D. Damayanti, “Komparasi Algoritma Random Forest Classifier dan Support Vector Machine untuk Sentimen Masyarakat Terhadap Pinjaman Online di Media Sosial,” jipi. jurnal. ilmiah. penelitian. dan. pembelajaran. informatika., vol. 9, no. 4, pp. 2018–2029, Nov. 2024, doi: 10.29100/jipi.v9i4.5608.
N. Cahyani, R. Irsyada, and A. Y. Kartini, “Implementasi Machine Learning Model sebagai Sistem Prediksi Penyakit Breast Cancer,” digitech, vol. 4, no. 2, pp. 1112–1120, Jan. 2025, doi: 10.47709/digitech.v4i2.5209.
K. Anam, A. R. Rinaldi, and F. Fathurrohman, “Komparasi Algoritma Mechine Learning dalam Klasifikasi Loyalitas Nasabah Bank Berbasis Particle Swarm Optimization,” jati, vol. 8, no. 4, pp. 8212–8218, Aug. 2024, doi: 10.36040/jati.v8i4.10941.