Inggried Rillya Sondakh (1), Kristofel Santa (2), Efraim Ronald Stefanus Moningkey (3)
General Background: Public sector budget planning requires data-driven approaches to support service sustainability, particularly for emergency institutions such as regional fire departments. Specific Background: The Minahasa Regency Fire Department budget planning has relied on historical allocations that exhibit fluctuating and non-linear trends across expenditure categories. Knowledge Gap: Previous planning practices have not fully utilized non-linear statistical modeling to interpret historical budget dynamics and medium-term projections. Aims: This study aims to analyze historical budget trends and predict expenditure needs for the 2025–2027 period using a second-order polynomial regression model. Results: Using budget data from 2019–2024, the model successfully captured non-linear expenditure patterns, including a sharp increase in personnel and capital expenditures in 2024, with coefficients of determination of 0.448 for personnel expenditures and 0.409 for capital expenditures, while total projected expenditures approach IDR six billion by 2027. Novelty: This research integrates second-order polynomial regression with an interactive Streamlit-based application for visualizing and interpreting public sector budget projections. Implications: The findings provide an analytical basis for local governments to anticipate medium-term budget requirements, prioritize expenditures, and strengthen data-based financial planning for fire service operations.
• Second-order polynomial modeling captures non-linear expenditure patterns across budget categories• Historical personnel expenditure spikes shape medium-term fiscal projections• Streamlit-based visualization supports data-driven public budget planning
Polynomial Regression; Budget Prediction; Fire Department; Historical Data; Streamlit Application
E. E. Silalahi, A. Z. Ibrahim, F. Xaverius, and L. Aba, “Efek moderasi sumber daya manusia terhadap hubungan dokumen perencanaan, lingkungan birokrasi, dan uang persediaan dengan penyerapan anggaran daerah khusus Ibu Kota Jakarta,” 2025.
I. N. T. A. Putra et al., “Penerapan library TensorFlow, CVzone, dan NumPy pada sistem deteksi bahasa isyarat secara real time,” JKDN, vol. 2, no. 3, 2023.
R. Noviar, M. Jamal, and M. Hafel, “Peran DAMKAR sebagai upaya pelayanan pemadam kebakaran dan penyelamatan Dinas Pemadam Kebakaran di Kecamatan Longkali Kabupaten Paser,” Journal Publicuho, vol. 6, no. 2, pp. 658–670, 2023, doi: 10.35817/publicuho.v6i2.164.
M. Lorensa, G. C. Rorimpandey, and K. Santa, “Perbandingan algoritma regresi linear dengan algoritma backpropagation estimasi timbulan sampah di Sulawesi Utara,” IJCS, vol. 13, no. 5, pp. 8459–8479, 2024.
E. R. S. Moningkey, D. D. Harisondak, and K. Santa, “Support vector machine algorithm for classifying public satisfaction index,” Academia Open, vol. 10, no. 2, pp. 1–11, 2025, doi: 10.21070/acopen.10.2025.12697.
R. L. B. Mangkey, G. C. Rorimpandey, and S. C. Kumajas, “Analisis prostitusi online pada aplikasi MiChat menggunakan algoritma Naïve Bayes dan framework NIST,” MINFO POLGAN, vol. 14, pp. 2658–2666, 2025.
L. Kusumawati, A. Khanif Zyen, and A. Sucipto, “Prediction of blood demand for patients at the PMI Kudus UDD using the linear regression method,” Jurnal Informatika, vol. 4, no. 2, 2025.
R. Harahap, H. Yenni, and M. Jamaris, “Implementasi algoritma regresi linear untuk memprediksi harga laptop,” 2025.
A. Husni Johan and E. Waluyo, KAPALAMADA: Jurnal Multidisipliner, 2025, doi: 10.62668/kapalamada.v4i01.1479.
P. Herwanto et al., “Analisis perbandingan model algoritma data mining dalam memprediksi harga emas terhadap mata uang US Dollar (XAU/USD) di pasar forex,” INFORMASI: Jurnal Informatika dan Sistem Informasi, 2024.
M. Iqbal, R. K. Dinata, and R. Suwanda, “Comparison of linear regression and polynomial regression for predicting rice prices in Lhokseumawe City,” Jurnal Sisfokom, vol. 14, no. 3, pp. 387–394, 2025, doi: 10.32736/sisfokom.v14i3.2396.
A. H. Lubis, R. Pulungan, and M. R. Pulungan, “Prediksi harga pangan di tengah isu ketidakpastian global menggunakan metode regresi linear dan regresi polinomial,” 2024.
E. A. Putra, “Prediksi produksi daging sapi nasional dengan metode regresi linier dan regresi polinomial,” Jurnal Ilmiah Komputasi, vol. 20, no. 2, 2021, doi: 10.32409/jikstik.20.2.2722.
R. Kaestria, E. F. Himmah, and R. Irawan, “Penerapan Matplotlib dalam visualisasi data untuk analisis hubungan penggunaan gadget dan hasil belajar,” Journal of Digital Business and Information Technology, vol. 1, no. 1, pp. 29–39, 2024, doi: 10.23971/jobit.v1i1.204.