Parabelem Tino Dolf Rompas (1), Astrid Padri Said (2)
Background: The advancement of digital technology has transformed government administrative processes, demanding more transparent and accurate systems for managing employee attendance. Specific background: The Tomohon Land Office still relies on manual attendance methods that often result in inefficiency, fraud potential, and limited verification capability. Knowledge gap: Current attendance systems lack integration between geographical validation and automatic identity verification. Aims: This research aims to develop an attendance system based on Global Positioning System and Deep Learning algorithms for reliable facial recognition and real-time location validation. Results: Using the Waterfall development model, the system integrates geographical coordinates and facial data, achieving 95–98 percent recognition accuracy and under two seconds of response time. Novelty: The system introduces a combined method of multi-angle facial enrolment and precise location verification through Haversine calculation. Implications: This innovation promotes transparency, accuracy, and efficiency in employee attendance management and supports digital transformation in public institutions.
Integration of Global Positioning System and Deep Learning enables precise attendance validation.
Multi-angle facial enrolment ensures stable and reliable recognition results.
Supports digital transformation for transparent and efficient attendance management.
Global Positioning System, Deep Learning, Facial Recognition, Employee Attendance System, Digital Transformation
S. Latifah, “Analisis Implementasi Sistem Informasi: Studi Literatur Analysis Of Information System Implementation: Literature Review,” Jurnal Teknologi Dan Pemerintahan, vol. 2, no. 2, pp. 44–52, 2020.
T. Lesmana and M. Silalahi, “Rancang Bangun Sistem E-Administrasi Berbasis CodeIgniter Framework di KP2A Batam,” Comasie, vol. 3, no. 3, pp. 21–30, 2022.
E. Effendi, R. S. A. Sagalai, and S. Rezeki, “Jenis-Jenis Sistem Informasi Dan Model Sistem Informasi,” Jurnal Pendidikan Dan Konseling, vol. 5, no. 2, pp. 4944–52, 2023.
R. Setiawan, N. P. T. Prakisya, and R. Ariyuana, “Rekayasa Perangkat Lunak Aplikasi Presensi Mobile Menggunakan Metode Deep Learning,” Jurnal Ilmiah Pendidikan Teknik Dan Kejuruan, vol. 17, no. 1, pp. 36–48, 2023, doi: 10.20961/jiptek.v17i1.76556.
A. Putra, U. Mansyuri, and G. D. P. Aryono, “Analisis Penggunaan Sistem Face Recognition Dalam Mengelola Absensi Karyawan Di PT Bintang Inspeksi Indonesia,” Jurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, vol. 5, no. 1, pp. 01–08, 2025, doi: 10.55606/juisik.v5i1.940.
M. Almuhaemin Ismail and C. Susanto, “Perancangan Aplikasi Smart Service Berbasis Android Di Pt. Indomarco Prismatama,” Jurnaldipanegara Komputer Sistem Informasi, vol. XVI, no. 1, pp. 89–96, 2022.
B. B. Wibowo and E. B. Setiawan, “Implementasi Face Recognition Dan Geolocation Pada Sistem Presensi Karyawan Berbasis Mobile Apps,” Komputa: Jurnal Ilmiah Komputer Dan Informatika, vol. 13, no. 1, pp. 11–22, 2024, doi: 10.34010/komputa.v13i1.11149.
M. Hasanah and A. Suharso, “Algoritma Haversine Pada Sistem Informasi Geografis: Tinjauan Literatur Sistematis,” Nuansa Informatika, vol. 17, no. 2, pp. 135–43, 2023, doi: 10.25134/ilkom.v17i2.10.
H. S. Tiwi, K. Santa, and G. C. Rorimpandey, “Implementasi Algoritma Haversine Pada Aplikasi Pencarian Layanan Kesehatan Berbasis Android,” Journal of Innovation And Future Technology (IFTECH), vol. 6, no. 2, pp. 203–10, 2024, doi: 10.47080/iftech.v6i2.3309.
V. B. C. Krishna, P. V. B. Reddy, A. C. Kumar, S. Ahmed, and M. Sampath, “Face Recognition Based Attendance Management System Using DLIB,” International Journal of Engineering and Advanced Technology, vol. 8, no. 5 (Special Issue), pp. 57–61, 2020, doi: 10.35940/ijeat.e1012.0585s19.
P. B. Jha, A. Basnet, B. Pokhrel, B. Pokhrel, G. K. Thakur, and S. Chhetri, “An Automated Attendance System Using Facial Detection and Recognition Technology,” Apex Journal of Business and Management, pp. 103–20, Nov. 2023, doi: 10.61274/apxc.2023.v01i01.008.
R. B. Setiawan and N. Lukman, “Attendance System Face Recognition Using Convolutional Neural Network (CNN),” CoreID Journal, vol. 1, no. 3, pp. 116–21, 2024, doi: 10.60005/coreid.v1i3.16.
A. Abdillah, F. N. Pratiwi, Muhammadiyah DR Hamka, Jakarta Timur, and Provinsi DKI Jakarta, “Implementasi Pengenalan Wajah, Deteksi Kehadiran, Dan Geolokasi Menggunakan TensorFlow Lite Dan Google ML Kit Pada Aplikasi Absensi Mobile,” Sistemasi: Jurnal Sistem Informasi, vol. 14, no. 1, pp. 2540–9719, 2025.
T. Rukhmana, “Analisis Fungsi Dan Pentingnya Landasan Teori Dalam Penulisan Karya Ilmiah,” Jurnal Edu Research: Indonesian Institute For Corporate Learning And Studies (IICLS), vol. 2, no. 2, pp. 28–33, 2021.
I. P. Elba, D. Nugraha, and G. Sukadarmika, “Sistem Presensi Otomatis Berbasis Pengenalan Wajah Dengan Database Real-Time,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 10, no. 4, pp. 958–66, 2025, doi: 10.30591/jpit.v10i4.8792.
M. D. Prasetia, A. T. Gultom, L. Leticia, F. N. S. Damanik, and S. J. Pipin, “Pengembangan Aplikasi Presensi Online Berbasis Mobile Dengan Penerapan Geolocator Dan Face Recognition Pada CV. Global Mandiri,” Jurnal SIFO Mikroskil, vol. 25, no. 1, pp. 49–66, 2024, doi: 10.55601/jsm.v25i1.1223.
D. Purwanto, R. E. Putri, Y. Fadly, and D. C. Pratiwi, “Sistem Absensi Online Berbasis Web Dengan Penggunaan Teknologi GPS,” Jurnal Minfo Polgan, vol. 13, no. 2, pp. 1800–1811, 2024, doi: 10.33395/jmp.v13i2.14258.