Login
Section Innovation in Computer Science

Algorithm Comparison for Estimating Chili Pepper Production in North Sulawesi Province

Perbandingan Algoritma untuk Estimasi Produksi Cabai Rawit di Provinsi Sulawesi Utara
Vol. 26 No. 4 (2025): October:

Matthew Albert Alexander Musung (1), Alfiansyah Hasibuan (2)

(1) Program Studi Teknik Informatika, Universitas Negeri Manado, Indonesia
(2) Program Studi Teknik Informatika, Universitas Negeri Manado, Indonesia
Fulltext View | Download

Abstract:

Background: Chili pepper production in North Sulawesi Province plays a vital role in regional food supply yet experiences frequent fluctuations due to natural and seasonal factors. Specific Background: These production instabilities have led to difficulties in market price control and agricultural planning, prompting the need for accurate predictive models. Knowledge Gap: Previous studies have compared regression and neural network algorithms in various domains, but little research has focused on local agricultural commodities such as chili peppers in North Sulawesi. Aim: This study compares the performance of Multiple Linear Regression and Backpropagation algorithms in estimating chili pepper production using statistical data from the North Sulawesi Statistics Agency (2018–2023). Results: Evaluation using R-squared (R²) and Mean Absolute Percentage Error (MAPE) shows that Backpropagation achieved R² = 0.846 and MAPE = 3.235%, outperforming Multiple Linear Regression (R² = 0.228; MAPE = 6.875%). Novelty: The study uniquely applies machine learning algorithms to a regional agricultural context characterized by nonlinear and fluctuating production data. Implications: The findings demonstrate the potential of Backpropagation as a reliable predictive tool for developing intelligent agricultural systems that support production planning and food security policy in North Sulawesi.


Highlights


  • Backpropagation shows higher accuracy than Multiple Linear Regression.




  • Estimation uses agricultural data from North Sulawesi Province.




  • Model supports predictive systems for food production planning.




Keywords

Backpropagation, Chili Production, Multiple Linear Regression, Prediction Model, North Sulawesi

Downloads

Download data is not yet available.

References

www.detik.com

, “H-1 Lebaran, Harga Cabai Rawit di Pasar Sidoarjo Tembus Rp 130 Ribu per Kg,” 2025. https://www.detik.com/jatim/bisnis/d-7848510/h-1-lebaran-harga-cabai-rawit-di-pasar-sidoarjo-tembus-rp-130-ribu-per-kg

(accessed Jul. 08, 2025).

www.manado.tribunnews.com

, “Sulut Impor Cabai dari Surabaya: Begini Penjelasan Gubernur Olly,” 2019. https://manado.tribunnews.com/2019/11/06/sulut-impor-cabai-dari-surabaya-begini-penjelasan-gubernur-olly

(accessed Jul. 09, 2025).

N. Nafi’iyah and N. N. Aulia, “Prediksi Harga Minyak Sayuran Data Kaggle Dengan Regresi Linear Berganda Dan Backpropagation,” J. SISFOTENIKA, vol. 12, no. 2, pp. 136–145, 2022, [Online]. Available: http://sisfotenika.stmikpontianak.ac.id/index.php/ST

Masruroh and K. F. Mauladi, “Perbandingan Metode Regresi Linear Dan Neural Network Backpropagation Dalam Prediksi Nilai Ujian Nasional Siswa Smp Menggunakan Software R,” Joutica, vol. 5, no. 1, p. 331, 2020, doi: 10.30736/jti.v5i1.347.

M. H. Fikri, I. Permana, M. R. Mundzir, and M. Megawati, “Prediksi Jumlah Pendaftar Jemaah Umrah Menggunakan Backpropagation dan Regresi Linear pada PT. Hajar Aswad Mubaroq,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 4, pp. 1209–1217, 2024, doi: 10.57152/malcom.v4i4.1371.

O. S. H. Raharusun and A. Hasibuan, “Sistem Prediksi Produksi Beras Menggunakan Multiple Linear Regression untuk Optimalisasi Ketahanan Pangan di Kabupaten Minahasa,” JOINTER J. Informatics Eng., vol. 5, no. 02, pp. 36–40, 2024, doi: 10.53682/jointer.v5i02.376.

F. Rohman, M. S. Al Amin, and Emidiana, “Prediksi Beban Listrik Dengan Menggunakan Jaringan Syaraf Tiruan Metode Backpropagation,” J. Surya Energy, vol. 5, no. 2, pp. 55–60, 2022, doi: 10.32502/jse.v5i2.3092.

H. Snyder, “Literature review as a research methodology: An overview and guidelines,” J. Bus. Res., vol. 104, no. March, pp. 333–339, 2019, doi: 10.1016/j.jbusres.2019.07.039.

D. Kuizinienė et al., “A comparative study of feature selection and feature extraction methods for financial distress identification,” PeerJ Comput. Sci., vol. 10, pp. 1–44, 2024, doi: 10.7717/PEERJ-CS.1956.

A. Shmuel, O. Glickman, and T. Lazebnik, “Data Augmentation for Deep Learning Regression Tasks by Machine Learning Models,” pp. 1–14, 2025, [Online]. Available: http://arxiv.org/abs/2501.03654

Y. Xu and R. Goodacre, “On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning,” J. Anal. Test., vol. 2, no. 3, pp. 249–262, 2018, doi: 10.1007/s41664-018-0068-2.

L. M. Ginting, M. M. Sigiro, E. D. Manurung, and J. J. P. Sinurat, “Perbandingan Metode Algoritma Support Vector Regression dan Multiple Linear Regression Untuk Memprediksi Stok Obat,” J. Appl. Technol. Informatics Indones., vol. 1, no. 2, pp. 29–34, 2021, doi: 10.54074/jati.v1i2.36.

G. Ramadhona, B. D. Setiawan, and F. A. Bachtiar, “Prediksi Produktivitas Padi Menggunakan Jaringan Syaraf Tiruan Backpropagation,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 12, pp. 6048–6057, 2018.

M. Li, “Comprehensive Review of Backpropagation Neural Networks,” Acad. J. Sci. Technol., vol. 9, no. 1, pp. 150–154, 2024, doi: 10.54097/51y16r47.

E. Kurniawan et al., “Implementation of Backpropogation Method With Nguyen Widrow,” vol. 6, no. 1, pp. 49–54, 2019, doi: 10.25126/jtiik.20196904.

S. Ayunda, “Prediksi Jumlah Produksi Kelapa Sawit di Provinsi Riau Menggunakan Metode Double Moving Average,” Indones. Counc. Prem. Stat. Sci., vol. 3, no. 2, p. 62, 2024, doi: 10.24014/icopss.v3i2.32269.

A. T. Lumataw and G. C. Rorimpandey, “Sistem Prediksi Pengadaan Barang Menggunakan Algoritma Regresi Linier,” J. Inf. Syst. Manag., vol. 5, no. 2, pp. 194–198, 2024, doi: 10.24076/joism.2024v5i2.1402.