Loading [MathJax]/jax/output/HTML-CSS/config.js
Login

Sentiment Analysis of Zalora Products on Google Play Store Using Random Forest Method

Analisis Sentimen terhadap Produk Zalora di Google Play Store Menggunakan Metode Random Forest Section Innovation in Computer Science
Vol. 26 No. 3 (2025): July:

Rizky Saputra Cendikiawan (1), Ali Ibrahim (2), Mira Afrina (3), Rizka Dhini  Kurnia (4)

(1) Program Studi Sistem Informasi, Universitas Sriwijaya, Indonesia
(2) Program Studi Sistem Informasi, Universitas Sriwijaya, Indonesia
(3) Program Studi Sistem Informasi, Universitas Sriwijaya, Indonesia
(4) Program Studi Sistem Informasi, Universitas Sriwijaya, Indonesia

Abstract:

General Background: The rapid growth of e-commerce platforms has intensified the need to understand consumer sentiment to improve service quality and competitiveness. Specific Background: ZALORA, as a leading online fashion retailer in Southeast Asia, has accumulated vast user-generated feedback, particularly on platforms like the Google Play Store. Knowledge Gap: Despite the availability of such data, limited studies have analyzed consumer sentiment using machine learning methods specifically tailored to ZALORA’s mobile platform. Aims: This study aims to examine consumer sentiment toward ZALORA products and assess the effectiveness of the Random Forest algorithm in classifying sentiment. Results: Utilizing a quantitative approach, 1,200 user reviews were analyzed, with 63.5% expressing positive sentiment. Word cloud visualization supported this finding, revealing frequently mentioned terms such as “product,” “goods,” and “shopping.” The Random Forest model achieved an accuracy of 80%, with precision, recall, and F1-score values for positive sentiment all exceeding 0.80. Novelty: This research integrates TF-IDF-based preprocessing with Random Forest classification to enhance sentiment analysis performance specifically for mobile commerce reviews. Implications: The findings highlight the potential of machine learning in extracting actionable insights from user reviews, offering practical implications for improving customer experience and guiding strategic development in digital retail platforms.


Highlights:  




  • High accuracy (80%) achieved using Random Forest for sentiment classification.




  • TF-IDF preprocessing significantly improved model performance.




  • Word cloud analysis revealed key satisfaction indicators from users.




Keywords: Sentiment Analysis, Random Forest Method, Zalora Consumers 

Downloads

Download data is not yet available.

References

[1] S. Ahadiyah, “Tren Perkembangan E-Commerce di Era Digital,” Jurnal Teknologi dan Bisnis Digital, vol. 8, no. 1, pp. 12–20, 2024.

[2] SellersCommerce, “E-Commerce Statistics and Trends,” [Online]. Available: https://sellerscommerce.com [Accessed: May 14, 2025].

[3] S. Asyifah, A. D. Pratama, and M. R. Hanif, “Personalisasi Layanan dalam Aplikasi E-Commerce,” Jurnal Sistem Informasi Bisnis, vol. 10, no. 2, pp. 75–83, 2023.

[4] M. Setiawan, L. S. Putri, and A. M. Fadilah, “Pengaruh Kualitas Produk dan Kemudahan Belanja terhadap Minat Beli Konsumen Online,” Jurnal Ekonomi dan Bisnis, vol. 7, no. 1, pp. 45–52, 2024.

[5] M. Aminullah, Y. D. Ramadhani, and R. Prasetyo, “Analisis Sentimen Menggunakan Metode NLP terhadap Opini Konsumen,” Jurnal Informatika dan Sistem Informasi, vol. 12, no. 1, pp. 30–38, 2024.

[6] A. Jennifer, I. R. Lubis, and H. Z. Pratama, “Penerapan Sentiment Analysis dalam Dunia Bisnis,” Jurnal Ilmu Komputer dan Aplikasi, vol. 15, no. 2, pp. 90–97, 2024.

[7] N. Sagita, H. D. Rahmat, and Y. Anggraini, “Optimasi Preprocessing Data Teks untuk Analisis Sentimen,” Jurnal Sains Data, vol. 5, no. 1, pp. 22–29, 2023.

[8] Y. Yudawisastra, F. P. Nugraha, and S. Kurniawan, Manajemen Pemasaran Strategik, Bandung: Alfabeta, 2024.

[9] E. Nursiyono, Pengantar Pembelajaran Mesin untuk Analisis Data, Yogyakarta: Deepublish, 2023.

[10] R. Rania and I. Syah, “Penerapan Random Forest untuk Klasifikasi Sentimen Review Konsumen,” Jurnal Teknologi Informasi dan Komunikasi, vol. 9, no. 2, pp. 60–68, 2024.

[11] F. Saputri, D. K. Anjani, and A. R. Maulana, “Penerapan Preprocessing dalam Pengolahan Teks Bahasa Indonesia,” Jurnal Teknologi Informasi, vol. 7, no. 1, pp. 45–52, 2023.

[12] A. D. Nugroho and T. P. Putri, “Sistem Labeling Otomatis Sentimen Menggunakan Lexicon Bahasa Indonesia,” in Proc. Seminar Nasional Teknologi Informasi, 2022.

[13] R. Irawan, “Visualisasi Word Cloud untuk Analisis Sentimen Media Sosial,” Jurnal Media Informatika, vol. 5, no. 2, pp. 61–69, 2021.

[14] A. Hidayat and B. Kurniawan, “Pembagian Data Latih dan Uji yang Optimal pada Algoritma Machine Learning,” Jurnal Ilmiah Komputer dan Informatika, vol. 9, no. 1, pp. 23–30, 2022.

[15] K. Sari and F. Hidayat, “Implementasi TF-IDF untuk Analisis Ulasan Produk,” Jurnal Teknologi dan Informasi, vol. 11, no. 2, pp. 101–110, 2023.

[16] B. Nugroho and R. A. Putri, “Studi Perbandingan Metode Random Forest dan Decision Tree,” Jurnal Informatika Universitas ABC, vol. 8, no. 1, pp. 55–64, 2024.

[17] D. S. Lestari, A. R. Mahendra, and M. P. Rachman, “Evaluasi Model Klasifikasi Sentimen Menggunakan Confusion Matrix,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 6, no. 3, pp. 88–97, 2023.