Indonesia's Breakthrough in Maximizing Wind Energy Efficiency Through Optimized Blade Configuration
View article

Keywords

wind energy
NACA 0021
rotor blades
turbine performance
renewable energy

How to Cite

Prasetiyo , R. A. Y., & Firdaus, E. R. (2024). Indonesia’s Breakthrough in Maximizing Wind Energy Efficiency Through Optimized Blade Configuration. Indonesian Journal of Innovation Studies, 25(3), 10.21070/ijins.v25i3.1160. https://doi.org/10.21070/ijins.v25i3.1160

Abstract

Indonesia faces rising energy demand, risking an energy crisis and increased fossil fuel dependence. This study explores using NACA 0021 airfoil blades to improve wind turbine performance by analyzing the effect of different rotor blade numbers. Conducted at Universitas Muhammadiyah Sidoarjo, the research tested turbines with 2, 3, and 4 blades, measuring current, voltage, power, and efficiency. Results showed that more rotor blades enhance turbine performance, increasing current and voltage output. This suggests optimizing blade configurations can significantly boost small-scale wind energy systems, helping reduce fossil fuel reliance and mitigate the energy crisis.

Highlights:

1. More rotor blades boost turbine performance: increased current and voltage.
2. NACA 0021 airfoil optimizes small-scale power generation.
3. Effective blade configuration reduces fossil fuel reliance, mitigating energy crises.

Keywords: wind energy, NACA 0021, rotor blades, turbine performance, renewable energy

https://doi.org/10.21070/ijins.v25i3.1160
View article

References

Y. Cafasso, "Unjuk Kerja Kincir Angin Poros Vertikal Model WePOWER," Skripsi. Tidak Diterbitkan. Fakultas Sains dan Teknologi. Universitas Sanata Dharma, Yogyakarta, 2016.

P. D. Dietzel, Turbin, Pompa dan Kompresor. Wurzburg: Erlangga, 1980.

E. Edo, "Unjuk Kerja Turbin Angin Darrieus Tipe H Berpenampang Sudu Naca 2415 dengan Tiga Variasi Diameter," Skripsi. Tidak Diterbitkan. Fakultas Sains dan Teknologi. Universitas Sanata Dharma, Yogyakarta, 2019.

E. Achdi, "Uji Prestasi Mesin," Modul Praktikum, Bandung, Teknik Mesin UNPAS, 2015, pp. 23-36.

M. Ibnu, "Pengaruh Wing Tip Sudut Blade Rotor Terhadap Unjuk Kerja Wind Turbin dengan Menggunakan Blade Naca 0018," Skripsi. Tidak Diterbitkan. Fakultas Teknik. Universitas Muhammadiyah, Sidoarjo, 2020.

M. Nechleba, Hydraulic Turbines: Their Design and Equipment. London: ARTIA-PRAGUE, 1957.

S. J. Niranjana, "Power Generation by Vertical Axis Wind Turbine," International Journal of Emerging Research in Management & Technology, vol. 4, no. 7, pp. 1-7, 2015.

O. Hammond, S. Hunt, and E. Machlin, "Design of an Alternative Hybrid Vertical Axis Wind Turbine," Bachelor Theses, Worcester Polytechnic Institute, United States, 2014.

A. Putranto, "Rancang Bangun Turbin Angin Vertikal Untuk Penerangan Rumah Tangga," Skripsi. Tidak Diterbitkan. Fakultas Teknik. Universitas Diponegoro, Semarang, 2011.

A. R. Saputra, "Unjuk Kerja Kincir Angin Model Propeler Tiga Sudu Berpenampang Lintang Airfoil Naca 0021 dengan Tiga Variasi Kemiringan Sudut 10°, 15°, 20°," Skripsi. Tidak Diterbitkan. Fakultas Sains dan Teknologi. Universitas Sanata Dharma, Yogyakarta, 2019.

S. Sunyoto, "Klasifikasi Turbin Air," Retrieved February 30, 2013.

S. Brusca, R. Lanzafame, and M. Messina, "Design of a Vertical-Axis Wind Turbine: How the Aspect Ratio Affects the Turbine’s Performance," International Journal of Energy and Environmental Engineering, vol. 5, no. 4, pp. 333-340, 2014.

W. Kaddihani, Balai Teknologi Bahan Bakar dan Rekayasa Desain. Tangerang, 2017.

W. Arismunandar, Penggerak Mula Turbin. Bandung: ITB, 1997.

P. Wibowo, Turbin Wind. Graha Ilmu, Jakarta, 2007.

Y. Sumargi, "Modifikasi Dinamometer Daya Uji Prestasi Turbin Aksial Laboratorium UPM Teknik Mesin Universitas Pasundan," Universitas Pasundan, Bandung, 2016.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...