Vol. 13 (2021): January DOI: 10.21070/ijins.v13i.530

Design and Build IoT-Based Lavender Plant Smart Pots: Rancang Bangun Pot Pintar Tanaman Lavender Berbasis IoT

Adi Indra Satrio Dwi Hadidjadja Rasjid Saputra Universitas Muhammadiyah Sidoarjo Universitas Muhammadiyah Sidoarjo

This research started from plant observation, preparation, design of component and circuit specifications, assembly, work steps, and evaluation. The results of the study will prove the tool works or not, if the soil moisture sensor detects the soil moisture is reduced by 50%, then the sensor will respond and send a signal to the microcontroller to activate the relay so that the pump will turn on automatically. The monitoring system on the device can be accessed via a smartphone, the signal is sent by the smartphone and then captured by the microcontroller, then processed and the output can be an image of the monitored plant. This tool is also equipped with a water reservoir that can also be monitored from a smartphone. If the water in the reservoir reaches 30% of the capacity of the reservoir, the Water Level sensor will send a signal to the microcontroller and warn that the water level is very low, then send an order to the owner to immediately fill the reservoir. At night this tool is also equipped with an LDR sensor if the light intensity is less then the LED will light up.

Pendahuluan

Ilmu pengetahuan kian tahun semakin berkembang. Perkembangan ilmu pengetahuan dalam menciptakan teknologi sangat pesat, terlebih lagi untuk memudahkan pekerjaan manusia setiap harinya. Berbagai perkembangan inovasi dapat memberikan manfaat positif bagi kelangsungan hidup manusia salah satunya adalah dengan menciptakan smart garden. Smart garden mempermudah para petani untuk memonitoring dan merawat tanaman secara otomatis tanpa membuang banyak tenaga manusia. Dari segi biaya para petani untuk perawatan dapat diminimalisir dalam jangka waktu yang panjang, akan terasa mahal ketika pembuatan alat tersebut dikarenakan biaya yang keluar relatif besar. Namun mahalnya alat tidak bisa menggantikan manfaat yang akan didapat nantinya dalam waktu yang panjang, Salah satunya penyiraman secara otomatis. Dalam menanam tanaman haruslah merawat sebaik mungkin apabila dalam perawatan saja sudah lalai, bisa - bisa tanaman tersebut akan mati.

Merawat tanaman juga harus secara insentif maka dari itu pemilik tanaman harus mengetahui nutrisi apa saja yang dibutuhkan oleh tanaman. Kebutuhan akan air dan cahaya harus diperhatikan secara terpadu begitu juga dengan kelembapan tanah. Bagi pecinta tanaman hias indoor semua itu menjadi prioritas yang tidak boleh dilupakan. Menurut Boost, M., & Bizouard, J. (2003), Pengetahuan yang spesifik dalam bidang pertanian sangat diperlukan untuk memonitoring kodisi tanaman, kondisi yang ideal dan kondisi yang terburuk bagi tanaman[1]. Suhu, kelembapan udara, cahaya serta kelembapan tanah merupakan beberapa indikator yang bisa digunakan untuk monitoring tanaman[2]. Saat pandemi covid-19 seperti ini penggemar tanaman hias semakin naik, salah satunya tanaman laveder yang membantu mengusir nyamuk. Namun tidak menutup kemungkinan ketika memasuki era new normal maka secara perlahan penggemar tersebut akan kembali kepada kesibukannya yang dahulu dan melupakan tanaman lavendernya. Belajar dari hasil analisa tersebut penulis melakukan penelitian sebuah alat yang bernama Pot Pintar[3].

Vol. 13 (2021): January DOI: 10.21070/ijins.v13i.530

Pot Pintar adalah penyempitan dari system smart garden, dimana tanaman akan dirawat secara otomatis, dan pemilik tanaman bisa melakukan monitoring melalui smartphone kapanpun dan dimanapun. Dirancang melalui aplikasi Blynk IoT[4]. Pot ini diharapkan dapat membantu pemilik untuk perawatan tanaman melalui pengontrolan dan monitoring jarak jauh. Dengan beberapa sensor yang terpasang diharapkan mampu untuk membuat tanaman tetap hidup[5]. Menggunakan sensor soil moisture yang dikontrol oleh mikrokontroller NodeMCU akan membatu pengukuran kelembapan tanah. Dengan demikian diharapkan tanaman mendapatkan perawatan yang optimal meskipun pemilik tidak secara langsung menangani tanaman tersebut. Dari uraian di atas dapat dijadikan judul penelitian "Rancang Bangun Pot Pintar Tanaman Lavender Berbasis IoT" [6].

NodeMCU adalah sebuah mikrokontroller yang bersifat open source yang sudah terintegrasi dengan chip ESP8266 yang dapat terhubung dengan jaringan lokal tanpa menambahkan perangkat atau modul wifi secara tepisah dengan kata lain NodeMCU dianalogikan sebagai arduino yang sudah terkoneksi dengan ESP8622 [7]. Ukuran yang compact panjang 4,83 cm lebar 2,54 cm dan berat 7 gram secara nyata lebih efisiensi tempat dari pada menggunakan mikrokontroller arduino. Modul ESP-12E yang tertanam memiliki 128kb internal RAM, 4MB flash memory untuk penyimpanan datanya serta sudah didukung 802.11b/g/n wifi transceifer[8]. NodeMCU ESP8266 punya total 30 pin interface untuk berkomunikasi dengan perangkat lain. NodeMCU menggunakan bahasa pemrograman C++ sama seperti dengan yang digunakan pada mikrokontroller Arduino, dan mendapat hak akses khusus. Hardware NodeMCU merupakan platform IoT yang sempurna karena system yang tertanam dalam chip berupa ESP8266 sebagai modul wifi on board[9]. Sehingga dapat diartikan bahwa NodeMCU adalah versi simple arduino dan ESP8266 sebagai modul wifi. Schematic ESP8266 digambarkan pada Gambar 1.1. [10]

Gambar 1. Schematic ESP8266

Soil moisture sensor FC-28 sensor sederhana untuk mengukur kelembapan tanah terdiri dari 2 probe guna membaca resistensi kelembapan tanah[11]. Tanah yang resistensinya besar adalah tanah kering, sedangkan yang resistensinya kecil dapat diartikan tanah tersebut basah dan tingkat kelembapannya tinggi[12].

Soil moisture sensore FC-28 memiliki prinsip kerja dengan menanamkan satu buah sensor kelembapan tanah dengan data sheet. Sensor soil moisture memiliki diagram sirkuit seperti yang ada pada Gambar 2

Gambar 2 . Schematic soil moisture

ESP32-CAM adalah modul kamera yang sangat compact ukurannya yang kecil serta dapat dioprasikan secara independen dengan sistem yang minimun. Berdimensi 27x40.5x4.5mm dan memerlukan arus sampai 6mA. Secara luas ESP32-CAM digunakan dalam berbagai macam produk IoT[13]. Dengan memakai ESP32-CAM memudahkan untuk memonitoring meskipun dalam kegelapan sekalipun karena sudah dilengkapi dengan LED. Juga tersedia slot microSD untuk menyimpan gambar yang telah ditangkap.

Sensor cahaya adalah rangkaian elektronik yang fungsinya mengubah besaran cahaya menjadi listrik. Light Dependent Resistor (LDR) merupakan resistor yang peka terhadap cahaya. Cara kerja sensor LDR dengan mengubah energi foton ke elektron. Komponen ini memiliki resistansi yang bergantung dengan cahaya yang jatuh ke permukaan. Hal ini berarti jika banyak cahaya mengenai sensor maka dapat menyebabkan elektron yang cukup untuk berpindah ke pita konduksi. Elektron bebas akan mengalirkan listrik sehingga resistensi menjadi turun. Schematic sensor LDR dapat dilihat pada Gambar 3.

Gambar 3.circuit LDR

Pompa aquarium merupakan komponen penting dalam memindahkan air dari tabung penampung

Vol. 13 (2021): January DOI: 10.21070/ijins.v13i.530

air ke tanaman lavender. Pompa yang digunakan memiliki tegangan AC. Memiliki sifat submersible dan tahan terhadap air sehingga dapat mengalirkan air yang cukup untuk tanaman. Cara kerja pada pompa yaitu ketika relay menyatakan sinyal NC kepada pompa maka pompa akan bekerja dan menyedot air untuk mengaliri tanaman. Ketika mikrokontroller memberikan sinyal NO maka pompa akan berhenti bekerja. Gambar 4

Gambar 4 Pompa AC 15 Watt

Metode Penelitian

Perancangan sistem alat yang sekarang dibuat dengan mengembangkan alat Rancang Bangun Pot Pintar Tanaman Lavender Berbasis IoT data akan ditampilkan pada LCD 16x2 dan smartphone yang telah terhubung pada blynk cloud. User juga akan dapat melihat kondisi dari tanaman melalui camera yang akan di sematkan dalam sistem pot pintar. Sistem ini diharapkan dapat berjalan optimal baik secara otomatis atau manual. Sistem yang akan dibuat meliputi perancangan software dan hardware. Berikut ini adalah blok diagram rancang bangun pot pintar tanaman lavender berbasis IoT ditunjukkan pada Gambar 5

Gambar 5. Blok Diagram Pot Pintar

Sistem pot pintar tanaman lavender berbasis IoT ini memiliki 4 fungsi utama diantaranya adalah mengukur kelembapan tanah, cahaya, camera, dan suhu. Ke empat fungsi tersebut akan mengirimkan data ke mikrokontroller kemudian akan di teruskan ke blynk cloud. Fungsi yang pertama adalah mengukur kelembapan tanah, ketika soil moisture membaca parameter yang sudah ditetapkan akan meneruskannya ke mikrokontroller NodeMCU yang kemudian akan memberikan sinyal ke relay untuk menghidupkan pompa DC. Fungsi kedua adalah sensor cahaya, jika cahaya yang didapatkan tanaman kurang maka LDR akan memberikan sinyal untuk menyalakan LED penerangan. Ketiga menjalankan fungsi Camera, user akan memberikan perintah dari controller pada blynk untuk mengaktifkan kamera. Guna kamera ini adalah sebagai pemantau tanaman apakah masih hidup atau tidak yang ditampilkan dalam bentuk gambar atau foto. Keempat adalah menjalankan fungsi DHT11 yang mengukur suhu ruangan yang ada pada sekitar tanaman. Dan suhu tersebut akan ditampilkan ke sebuah LCD 16x2.

Ke empat data tersebut diterima oleh blynk cloud tiap waktu tertentu kemudian dapat ditampilkan ke dalam smartphone yang telah terhubung. Terdapat 2 mode yaitu manual dan otomatis yang ditampilan pada aplikasi bylnk di smartphone, sehingga mempermudah user dalam merawat tanaman lavender. Diagram alir pot pintar tanaman lavender ditampilkan pada Gambar 6. dan diagram alir konektifitas pada Gambar 7

Gambar 6. Diagram Alir Pot Pintar

Gambar 7 Diagram alir konektifitas

Hasil dan Pembahasan

A. Pengujian Kelembapan Tanah

Percobaan yang dilakukan selama kurang lebih selama 6 Hari sehingga dapat diketahui kebutuhan air dan kelembapan tanah yang dibutuhkan tanaman lavender adalah sekitar DA 600 (Data Analog) atau bisa dikatakan Lembab. Range batas atau dikatakan kering yaitu DA 700 - 1024 (Data Analog) dan range batas bawah yang dibaca oleh sensor soil moisture adalah DA 0 - 600 dikatakan tanah basah. Range DA 601 - 699 dapat dikatakan Lembab, ini merupakan tanah yang baik untuk pertumbuhan tanaman lavender. Data yang sudah didapatkan bisa dilihat dalam Tabel 1

Vol. 13 (2021): January DOI: 10.21070/ijins.v13i.530

NO	TANGGAL	RATA-RATA	KONDISI	KETERANGAN
	PENGUJIAN	NILAI UJI]	
1			20-Agu-21	DA 701 s/d DA 710
2	21-Agu-21	DA 500 s/d DA 524	Basah	Sesuai
3	22-Agu-21	DA 741 s/d DA 712	Kering	Sesuai
4	23-Agu-21	DA 456 s/d DA 413	Basah	Sesuai
5	24-Agu-21	DA 660 s/d DA 653	Lembab	Sesuai
6	25-Agu-21	DA 609 s/d DA 615	Lembab	Sesuai

Table 1. Pengujian modul kelembapan tanah

Gambar 8. Serial Monitor Kelembapan Tanah

Dari Gambar 4.2 merupakan hasil pembacaan yang dilihat dari serial monitor. Dengan ADC 1024 yang berarti kondisi tanah kering. Tegangan yang diterima oleh sensor soil moisture adalah 5V

Berikut hasil rata - rata data analog yang terbaca:

- Data dengan nilai DA 701 s/d 710, DA 741 s/d DA 712 memilki kondisi yang kering karena belum dilakukannya penyiraman pada pagi hari.
- Data dengan Nilai DA 500 s/d DA 524, DA 456 s/d DA 413 memiliki kondisi Basah karena sudah dilakukan penyiraman secara berlebih.
- Data dengan nilai DA 660 s/d DA 653, DA 609 s/d DA 615 memiliki kondisi lembab, pengukuran dilakukan 4 jam setelah dilakukan penyiraman.

B. Pengujian Penyiraman Secara Otomatis

Pengujian penyiraman secara otomatis berkesinambungan dengan uji kelembapan tanah. Ketika sensor kelembapan tanah menyatakan range DA 700 - DA 1024 tanah tersebut kering maka kontak relay tertutup dan menghidupkan pompa air. Pembacaan dapat terlihat pada Gambar 9

Gambar 9. Kondisi Kering

Dalam kondisi range DA 601 s/d DA 699 dan range DA 0 – 600 atau kondisi lembab dan basah. Maka uji coba yang dihasilkan adalah pompa air mati. Seperti yang terlihat pada Gambar 10 dan Gambar 11

Gambar 10. Kondisi Lembab

Gambar 11. Kondisi Basah

	TANGGAL PENGUJIAN	WAKTU AUTOMATISASI			KET
		PAGI	SIANG	MALAM	
1	23-Agus-21	08.15	-	18.30	
2	24-Agus-21	05.05	13.08	21.00	
3	25-Agus-21	09.25	-	19.17	
4	26-Agus-21	04.59	12.00	20.10	
5	27-Agus-21	07.03	14.15	21.20	
6	28-Agus-21	07.40	14.52	22.59	

Table 2. Pengujian Penyiraman Tanaman Lavender

Vol. 13 (2021): January DOI: 10.21070/ijins.v13i.530

Dari hasil pengujian Tabel 2 dapat disimpulkan bahwa waktu penyiraman mengikuti kelembapan tanah pada saat ketika tanah mencapai range DA 700 s/d DA 1024 atau tanah kering. Tanah kering juga dipengaruhi oleh suhu pada hari itu yang terkadang panas ataupun dingin.

C. Pengujian Modul ESP32 CAM

pada Gambar 12 merupakan pengujian konektifitas kamera ESP32-Cam dengan jaringan internet. Menggunakan port '80' atau port 'http://'. Pada bagian paling bawah dari serial monitor terlihat camera ESP32-Cam mendapatkan IP Address 192.168.176.223. IP tersebut merupakan alamat yang dapat diakses pada web browser. Seperti pada Gambar 13

Gambar 12 Serial Monitor ESP32-Cam

Gambar 13. Tampilan ESP32 Pada Browser

Pada Gambar 13 merupakan tampilan pada browser google crhome sesuai dengan coding yang dibuat. Kamera tersebut hanya dapat diakses secara online. aplikasi blynk difungsikan melihat level air dengan batas minimum secara real melalui smarthphone tanpa harus melihatnya secara langsung. Tampilan aplikasi blynk mengunakan sensor ESP32-Cam di smartphone dapat dilihat pada Gambar 14

Gambar 14 modul camera aplikasi blynk

D. Pengujian Suhu dan Humanity Modul DHT11

Tanaman lavender yang digunakan sudah beradaptasi denga iklim tropis dengan suhu berkisar 28°C sampai dengan 32°C dengan kelembapan udara disekitar 60% yang berarti klembapan udara tidak terlalu kering dan juga tidak terlalu basah. Seperti yang ada pada Gambar 15

Gambar 15. Serial monitor sensor suhu

Dalam Gambar 15 Kelembaban terbaca 65%, suhu $31^{\rm o}$ C / $87,80^{\rm o}$ F. Dapat dikatakan bahwa sensor mendeteksi suhu yang sesuai dengan habitat tanaman lavender yang ada di indonesia. Ketika dalam keadaan kering penulis mencoba untuk memberikan hawa panas didekat sensor suhu. Maka sensor membaca kelembapan hingga mencapai 81%, suhu $52^{\rm o}$ C / $125^{\rm o}$ F yang bisa dilihat pada serial monitor Gambar 16

Gambar 16 Kelembapan meningkat hingga 81%

Berikut ini merupakan tabel pengujian sensor suhu dengan rentan waktu tertentu. Pada Tabel 4.4

NO	TANGGAL PENGUJIAN	WAKTU UJI	SUHU	KETERANGAN
1	23-Agu-21	08.15 WIB	29.90°C	Sesuai
2	24-Agu-21	21.00 WIB	26°C	Sesuai
3	25-Agu-21	09.25 WIB	31°C	Sesuai
4	26-Agu-21	20.10 WIB	28°C	Sesuai
5	27-Agu-21	07.03 WIB	28°C	Sesuai
6	28-Agu-21	07.40 WIB	28.10°C	Sesuai

Table 3. Pengujian sensor suhu DHT11

Kesimpulan

Dari pengujian yang telah dilakukan dapat disimpulkan bahwa:

Vol. 13 (2021): January DOI: 10.21070/ijins.v13i.530

Melakukan serangkaian uji coba sensor, melakukan wiring dan pengukuran tegangan masing masing sensor, konfigurasi hardware dan software, pengaplikasian system IoT ke aplikasi Blynk dan percobaan pot pintar tanaman lavender. Sehingga mendapatkan hasil Pot Pintar Tanaman Lavender sesuai dengan kondisi dan kebutuhan tanaman lavender. Keakuratan penyiraman secara otomatis sebesar 80% karena dalam pembacaan sensor soil moisture masih ada delay yang membuat pompa air terlambat berhenti.

Penyiraman dilakukan ketika kodisi tanah kering dalam parameter pengukuran yang dihasilkan oleh modul Soil Moisture adalah antara 700 – 1024 adalah Kering, 600 – 699 adalah Lembab, 0 – 599 adalah basah.. Kebutuhan cahaya yang dapat dibantu dengan modul LDR yang akan aktif apabila cahaya di sekitar tanaman kurang. Pembacaan sensor DHT memiliki kekakuratan sensor sebesar \pm 87%. Jadi Pot Pintar Tanaman Lavender Sudah berjalan secara optimal dan otomatis sehingga dapat tumbuh di dalam rumah.

- Rancangan Alat Menggunakan Sensor Soil Moisture, DHT11, Sensor Cahaya (LDR), ESP32-Cam, LCD 16x2, Pompa Motor Tegangan AC, dan Mikrokontroller NodeMCU ESP8266.
- Dengan merancang system IoT menggunakan aplikasi Blynk yang terkoneksi dengan smartphone, sehingga dapat diketahui tanpa melihat secara langsung keadaan tanaman dengan membaca rasio sensor kelembapan tanah, Suhu dan humidity,serta level ketinggian air yang tertangkap langsung oleh Camera ESP32.

References

- 1. [1] M. B. Ulum and D. H. R. Saputra, "Otomatis Spray Disinfektan Kandang Ayam Dengan Android Berbasis Arduino Uno," vol. 2, pp. 28–32, 2020.
- 2. [2] B. F. Günthardt et al., "RANCANG BANGUN SMART GARDEN BERBASIS IoT MENGGUNAKAN APLIKASI BLYNK," Director, vol. 15, no. 29, pp. 7577-7588, 2018, [Online]. Available: https://www.uam.es/gruposinv/meva/publicaciones jesus/capitulos_espanyol_jesus/2005_motivacion para elaprendizaje Perspectiva alumnos.pdf %0Ahttps://www.researchgate.net/profile/Juan_Aparicio7/publication/253571379_Los_estudi os s obre el cambio conceptual .
- 3. [3] F. Fathurrahmani and A. Noor, "Smartpot untuk Efisiensi Monitoring Tanaman Hias Berbasis IoT," Sisfotenika, vol. 9, no. 2, p. 203, 2019, doi: 10.30700/jst.v9i2.490.
- 4. [4] T. Thamaraimanalan, S. P. Vivekk, G. Satheeshkumar, and P. Saravanan, "Smart Garden Monitoring System Using IOT," Asian J. Appl. Sci. Technol. (Open Access Q. Int. J., vol. 2, no. 2, pp. 186–192, 2018, [Online]. Available: www.ajast.net.
- 5. [5] R. K. Ghito and N. Nurdiana, "Rancang Bangun Smart Garden System Menggunakan Sensor Soil Moisture dan Arduino Berbasis Android (Studi Kasus : : Di Gerai Bibit Narnea Cikijing)," Univ. Majalengka, pp. 166-170, 2018.
- 6. [6] M. Sambath, M. Prasant, N. Bhargav Raghava, and S. Jagadeesh, "Iot based garden monitoring system," J. Phys.Conf. Ser., vol. 1362, no. 1, 2019, doi: 10.1088/1742-6596/1362/1/012069.
- 7. [7] M. S. Titiek Widyastuti, "BUKU TANAMAN HIAS-upload.pdf." 2018.
- 8. [8] N. Hidayati et al., "Prototype smart home dengan modul nodemcu esp8266 berbasis internet of things (iot)."
- 9. [9] EINSTRONIC, "Nodemcu," Einstronic, 2017.
- 10. [10] B. A. B. Ii and D. Teori, "Gambar 1.1 Board NodeMcu 3," pp. 3-9, 2019.
- 11. [11] M. T. Setiawan, "Skripsi pemanfaatan sensor rfid untuk mengakses database di pt. jasuindo arjowiggins security," 2020.
- 12. [12] U. I. Gorontalo and I. O. Things, "MONITORING KELEMBABAN TANAH PERTANIAN MENGGUNAKAN SOIL MOISTURE SENSOR FC- 28 DAN ARDUINO UNO," vol. 10, pp. 237-243, 2018.
- 13. [13] C. A. M. Wi-fi and B. T. S. Module, "ink er," pp. 1-4.
- 14. [14] V. A. Suoth, H. I. Mosey, and R. C. Telleng, "Rancang bangun alat pendeteksi

Vol. 13 (2021): January DOI: 10.21070/ijins.v13i.530

intensitas cahaya berbasis Sensor Light Dependent Resistance (LDR)," J. MIPA, 2018, doi: 10.35799/jm.7.1.2018.19609.

- 15. [15] R. H. Sampieri, "2 Channel 5v 10A Relay Module," p. 634, 2019.
- 16. [16] P. Soni and K. Suchdeo, "EXPLORING THE SERIAL CAPABILITIES FOR 16x2 LCD INTERFACE," Int. J.Emerg. Technol. Adv. Eng., vol. 2, no. 11, pp. 109–112, 2018.
- 17. [17] M. M. Wurfel, "Temperature and Humidity Module," Aosong Guangzhou Electron. Co., Ltd, 2018, [Online]. Available: www.aosong.com.
- 18. [18] D. Srivastava, A. Kesarwani, and S. Dubey, "Measurement of Temperature and Humidity by using Arduino Tool and DHT11," Int. Res. J. Eng. Technol., vol. 05, no. 12, pp. 876–878, 2018.
- 19. [19] Pleva GmbH, "Temperature sensor," Melliand Textilberichte, vol. 76, no. 12, p. 1112, 1995, doi: 10.1007/978-3-319-19303-8 17.