
Vol. 27 No. 1 (2026): January DOI: 10.21070/ijins.v27i1.1896

ISSN (ONLINE) 2598-9936

INDONESIAN JOURNAL OF INNOVATION STUD

PUBLISHED BY UNIVERSITAS MUHAMMADIYAH SIDOARJO

Vol. 27 No. 1 (2026): January DOI: 10.21070/ijins.v27i1.1896

Table Of Contents

Journal Cover	. 1
Author[s] Statement	. 3
Editorial Team	
Article information	. 5
Check this article update (crossmark)	
Check this article impact	
Cite this article	
Title page	. 6
Article Title	. 6
Author information	. 6
Abstract	. 6
Article content	

Vol. 27 No. 1 (2026): January DOI: 10.21070/ijins.v27i1.1896

Originality Statement

The author[s] declare that this article is their own work and to the best of their knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the published of any other published materials, except where due acknowledgement is made in the article. Any contribution made to the research by others, with whom author[s] have work, is explicitly acknowledged in the article.

Conflict of Interest Statement

The author[s] declare that this article was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright Statement

Copyright Author(s). This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

Vol. 27 No. 1 (2026): January DOI: 10.21070/ijins.v27i1.1896

EDITORIAL TEAM

Editor in Chief

Dr. Hindarto, Universitas Muhammadiyah Sidoarjo, Indonesia

Managing Editor

Mochammad Tanzil Multazam, Universitas Muhammadiyah Sidoarjo, Indonesia

Editors

Fika Megawati, Universitas Muhammadiyah Sidoarjo, Indonesia

Mahardika Darmawan Kusuma Wardana, Universitas Muhammadiyah Sidoarjo, Indonesia

Wiwit Wahyu Wijayanti, Universitas Muhammadiyah Sidoarjo, Indonesia

Farkhod Abdurakhmonov, Silk Road International Tourism University, Uzbekistan

Bobur Sobirov, Samarkand Institute of Economics and Service, Uzbekistan

Evi Rinata, Universitas Muhammadiyah Sidoarjo, Indonesia

M Faisal Amir, Universitas Muhammadiyah Sidoarjo, Indonesia

Dr. Hana Catur Wahyuni, Universitas Muhammadiyah Sidoarjo, Indonesia

Complete list of editorial team (link)

Complete list of indexing services for this journal (link)

How to submit to this journal (link)

Vol. 27 No. 1 (2026): January DOI: 10.21070/ijins.v27i1.1896

Article information

Check this article update (crossmark)

Check this article impact (*)

Save this article to Mendeley

(*) Time for indexing process is various, depends on indexing database platform

Vol. 27 No. 1 (2026): January DOI: 10.21070/ijins.v27i1.1896

Evolution of Ecological Thinking in Architectural Theory and Sustainable Design Paradigms: Evolusi Pemikiran Ekologis dalam Teori Arsitektur dan Paradigma Desain Berkelanjutan

Evolusi Pemikiran Ekologis dalam Teori Arsitektur dan Paradigma Desain Berkelanjutan

Odina Olimova, o.odina@samdaqu.edu.uz, (1)

Junior researcher of Silk Road International Research Institute under the Silk Road International University of Tourism and Cultural Heritage, Uzbekistan

O.N.Babakandov, o.odina@samdaqu.edu.uz, (2)

Associate Professor(Ph.D. in arch.) the Samarkand State University of Architecture and Construction named after Mirzo Ulugbek, Samarkand, Uzbekistan

(1) Corresponding author

Abstract

Ecological thinking has increasingly emerged as a central paradigm in contemporary architectural theory, driven by escalating environmental degradation, climate change, and the growing recognition of complex interactions between the built environment and natural systems. Despite the expansion of green and sustainable architecture discourse, prior studies often remain fragmented, focusing separately on environmental performance, materials, or digital tools, without integrating ecological theory, architectural heritage, and technological innovation into a coherent framework. This study aims to systematically examine the evolution of ecological thinking in architectural theory and to clarify its role in shaping sustainable and adaptive design paradigms. The research adopts a qualitative methodology based on systematic literature review, historical-theoretical analysis, and comparative evaluation of architectural paradigms, drawing on peer-reviewed journal articles, theoretical monographs, and recent studies on sustainability, biomimicry, and digital design technologies indexed in major academic databases. The findings reveal a clear paradigm shift from mechanistic and form-oriented architectural models toward holistic, system-based, and interactive ecological approaches, in which architecture is understood as an adaptive component of broader environmental, cultural, and technological systems. The results also demonstrate that digital tools such as Building Information Modeling, data-driven design, and artificial intelligence increasingly support ecological thinking by enabling life-cycle analysis, adaptive responses, and integrative decisionmaking. The novelty of this study lies in synthesizing ecological theory, traditional architectural knowledge, and contemporary digital technologies into an integrated theoretical perspective, rather than treating them as isolated domains. The implications suggest that ecological thinking should be positioned not merely as an environmental strategy but as a foundational architectural paradigm, informing theory development, guiding sustainable design practice, influencing policy on the built environment, and reshaping architectural education toward interdisciplinary and ecologically grounded curricula.

Vol. 27 No. 1 (2026): January DOI: 10.21070/ijins.v27i1.1896

Keyword

Ecological Architectural Theory, Sustainable Design Paradigms, Systems-Based Design, Biomimetic Architecture, Digital Design Technologies

Highlight

- Ecological thinking redefines architecture as integrative systems linking environmental, cultural, technological, and social dimensions.
- Architectural paradigms shift empirically from mechanistic models toward holistic, adaptive, and system-based ecological frameworks.
- Digital technologies actively support resource-aware, responsive design, strengthening ecological integration across architectural practice..

Published date: 2025-12-22

Vol. 27 No. 1 (2026): January DOI: 10.21070/ijins.v27i1.1896

I. Introduction

Dalam The research is based on a qualitative approach to research, which is based on the systematic analysis of literature and synthesis of the historical theoretical knowledge, to study the development of an ecological approach to architectural theory. The methodological framework will help determine conceptual trajectories, dominant paradigms, and theoretical shifts in the ways of ecology and architecture being connected through the course of time. The main data sources will be peer-reviewed academic articles, theoretical monographs, and analytical reports based on the studies of architecture, ecological design, and sustainability, and it is specially dependent on the Scopus database journals.

The commencement of the research involved selection and screening of pertinent literature based on the relevance on the theme of ecological thinking, architectural paradigms, and sustainability- oriented design. The content analysis was applied to selected sources based on qualitative analysis so as to extract repetitive concepts, theoretical frameworks and to extract methodological strategies. A historical-comparative approach was used to trace the shift in the mechanistic and form-oriented theories of architecture to organismic, systemic and interactive ecological theories. This allowed the determination of continuity and discontinuity of theoretical standpoints in various eras.

In order to enhance analytical consistency, the research paper follows the conceptual mapping strategy, classifying the results into major themes, including ecosystem theory, organic architecture, bioclimatic design, digital technologies, and regenerative paradigms. The assessment of the conceptualization of these ideas in the architecture discourse and the way they are intertwined with eco-science and technological progress was conducted through the interpretation method. It is a methodology that values theoretical integration more over empirical measurement with the aim of generalizing fragmented knowledge into an explanatory framework. This methodology favors a critical interpretation of ecological thinking as a changing theoretical construct that influences current architectural research, learning and design practice.

The ecological architecture could be conceptually construed as a meeting of three interdependent fields, i.e. biological, theoretical and technical. The biological domain deals with the natural systems and ecological processes; the theoretical domain deals with abstract and analytical model of these processes and the technical one translates them into architectural solutions. Architecture takes a mediating role at the boundary between the two realms, whereby the ecological knowledge is converted into space, material and technological expression. This theoretical framework underpins the focus of the study on integration and not the individualistic performance standards.

II. Methodology

The research is based on a qualitative approach to research, which is based on the systematic analysis of literature and synthesis of the historical theoretical knowledge, to study the development of an ecological approach to architectural theory. The methodological framework will help determine conceptual trajectories, dominant paradigms, and theoretical shifts in the ways of ecology and architecture being connected through the course of time. The main data sources will be peer-reviewed academic articles, theoretical monographs, and analytical reports based on the studies of architecture, ecological design, and sustainability, and it is specially dependent on the Scopus database journals.

The commencement of the research involved selection and screening of pertinent literature based on the relevance on the theme of ecological thinking, architectural paradigms, and sustainability-oriented design. The content analysis was applied to selected sources based on qualitative analysis so as to extract repetitive concepts, theoretical frameworks and to extract methodological strategies. A historical-comparative approach was used to trace the shift in the mechanistic and form-oriented theories of architecture to organismic, systemic and interactive ecological theories. This allowed the determination of continuity and discontinuity of theoretical standpoints in various eras.

In order to enhance analytical consistency, the research paper follows the conceptual mapping strategy, classifying the results into major themes, including ecosystem theory, organic architecture, bioclimatic design, digital technologies, and regenerative paradigms. The assessment of the conceptualization of these ideas in the architecture discourse and the way they are intertwined with eco-science and technological progress was conducted through the interpretation method. It is a methodology that values theoretical integration more over empirical measurement with the aim of generalizing fragmented knowledge into an explanatory framework. This methodology favors a critical interpretation of ecological thinking as a changing theoretical construct that influences current architectural research, learning and design practice.

The ecological architecture could be conceptually construed as a meeting of three interdependent fields, i.e. biological, theoretical and technical. The biological domain deals with the natural systems and ecological processes; the theoretical domain deals with abstract and analytical model of these processes and the technical one translates them into architectural solutions. Architecture takes a mediating role at the boundary between the two realms, whereby the ecological knowledge is converted into space, material and technological expression. This theoretical framework underpins the focus of the study on integration and not the individualistic performance standards

III. Results and Discussion

A. Results

In the analysis of the provided sources, one can prove that the ecological thinking in architectural theory has passed through the separate yet interdependent stages, shifting to the approaches of mechanistic interpretation to the holistic, system-oriented, and interactive approaches. The literature review establishes the fact that early ecological thinking in architecture was mostly abstract, based on organismic philosophy and ecosystem theory, which viewed buildings and cities as being in a relationship with larger environmental systems. With time these concepts moved into pragmatic practices, especially with the concept of sustainable design, adaptive reuse and bioclimatic architecture. One of the main outcomes is a discovery of a paradigm shift where ecological thinking ceases to be an add-on environmental issue but a central theoretical basis of architectural design. Modern practices combine environmental performance, cultural background, and technological systems focusing on interdependence, as opposed to separate optimization. Digital tools BIM, AI, and data-driven modeling are demonstrated to assist this process by facilitating the life-cycle analysis, adaptive response, and integrated decision-making.

ISSN 2598-9936 (online), https://ijins.umsida.ac.id, published by Universitas Muhammadiyah Sidoarjo

Vol. 27 No. 1 (2026): January DOI: 10.21070/ijins.v27i1.1896

The results also give the importance of traditional and vernacular architectural knowledge as not yet obsolete. The research papers presented in the attached documents describe how the past practices, like climate-sensitive forms, local resources and passive environmental designs, are closely aligned with the current ecological goals. These practices offer theoretical continuity between the past and the present and support the ecological thinking as an evolutionary process and not the disruptive one.

Table 1. Evolution of Ecological Thinking in Architectural Theory

Period	Dominant Approach	Key Characteristics
1930s-1960s	Organismic/Systemic	Cities and buildings as integrated systems
1960s-1990s	Sustainable/Environmental	Energy efficiency, ethical concerns, green design
2000s-Present	Interactive/Regenerative	Digital tools, adaptability, ecological integration

B. Discussion

The findings imply that ecological thinking can be said to work both as a theoretical model and as a design tool. The move towards holistic paradigms and the replacement of mechanistic paradigms is indicative of wider epistemological shifts in architecture, whereby linear cause-effect models are substituted out with network based and adaptive interpretations. This shift brings the architectural theory closer to ecological science, in this case, ecosystem theory and systems thinking, which focus on feedback mechanisms, resiliency, and interdependence.

A significant aspect of modern ecological thought is the increasing use of biomimicry, in which architectural designs are based on natural design and the cycles of nature. In this regard, structures are becoming more and more theorized as living systems with passive and adaptive mechanisms of controlling energy, air movement, and thermal comfort. Such natural examples, as plant morphologies or termite mound ventilation systems, show how ecological intelligence in nature can be used to guide architectural design. The examples support the claim that ecological architecture is not only a technological style, but a systematic and philosophical re-consideration of architecture.

Nonetheless, the literature review of the past researches shows that there are still gaps in knowledge. Although the literature on sustainable materials, energy systems, or digital technologies is plentiful, the number of articles that manage to combine the three aspects into a single architectural theory is low. The literature is usually disjointed, and ecological science, architectural design, technological innovation have been regarded separately and not as interdependent spheres. This dissection restricts the creation of coherent design approaches that would be the full expression of the ecological thought as an integrated paradigm.

In practical terms, the results show that ecological architecture is becoming more prevalent in the design strategy, including adaptive reuse, circular material systems, and regenerative design. However there is still unequal implementation in the areas and in the contexts of education. The challenges to this include a lack of interdisciplinary cooperation, the lack of theoretical underpinning in architectural education and the difficulty in transforming abstract ecological ideas into tangible design instruments. These problems affirm what other researchers have found out that ecological thought is theoretically more developed than coherent practice.

 ${\bf Table\ 2.}\ {\bf Identified\ Knowledge\ Gaps\ in\ Ecological\ Architectural\ Research}$

Area	Identified Gap	Consequence
Theory integration	Lack of unified ecological framework	Fragmented design approaches
Education	Limited ecological content in curricula	Weak theoretical application
Practice	Technology-driven focus without theory	Reduced conceptual coherence

These findings have implications to the research of architecture and architectural practice. In theory, the ecological thinking is supposed to be accepted as one of the basic paradigms that transform the main architectural ideas of form, functionality, materiality, and context. In practice, this demands design techniques which combine environmental examination, cultural interpretation and technological mechanisms at an early conceptual phase. The findings also indicate that the field of architectural education needs to shift out of technical training on sustainability to more theoretical study of the ecological principles.

The proposed area of future research is a need to establish integrative theoretical frameworks that would mediate between the ecological science and architectural design without diminishing any of the two disciplines. Theoretical research will require profound research to explain how the notion of resilience, regeneration, and circularity can be converted into architectural terms and design logic. Ecological theory would be further developed by comparative studies in various cultural and climatic conditions to resolve the issue of the applicability and deficiencies of ecological theory.

In practical terms, additional empirical evidence of how digital instruments can be used to facilitate ecological thinking beyond performance-optimizing must be investigated through further empirical studies, specifically concerning participatory design, adaptive systems and long-term building management. Moreover, longitudinal research on ecological architectural education might be able to offer information on the impact of theoretical paradigms on professional practice in the course of time. All of these research directions are meant to address the existing gaps in knowledge and enhance ecological thinking as a sensible, theoretically-oriented, and practically-applicable framework to the modern-day ISSN 2598-9936 (online), https://lijins.umsida.ac.id, published by Universitas Muhammadiyah Sidoarjo

Vol. 27 No. 1 (2026): January DOI: 10.21070/ijins.v27i1.1896

architecture.

IV. Conclusion

This paper has shown that the ecological approach has taken a central place in the theoretical framework of the architectural discourse, and the concept of architecture has been redefined as a whole system that is found within the parameters of environmental, cultural, and technological environments. The results point to a very apparent shift in mechanistic and form-centered paradigms to holistic, system-based, and interactive ones, in which sustainability is viewed as not a technical performance but as an overall conceptual position. The examination of the sources attached testifies to the fact that the ecological architecture relies on the theory of ecosystems, old architectural knowledge, and current digital technologies and creates the continuity between the past practices and the present design approaches. The implications of the findings show that the architectural theory and practice should move towards interdisciplinary approaches, enhancing the theoretical foundations of the ecological ideas, and making them more consistently incorporated into their design education and working processes. Moreover, the analysis also indicates that there have always been theoretical and practical gaps and issues of interdisciplinary fragmentation that affect the full implementation of the ecological thinking in practice. In a more general theoretical perspective, the development of ecological thinking indicates the transition of anthropocentric views on the architectural theory to biocentric ones. Architecture is not seen as a powerful intervention into nature anymore, but as a collaborative system which functions within the ecological boundaries. This transformation widens the moral and professional role of the architects to active participants in the balance of the environment, continuity of culture and sustainability of the future. Ecological architecture should then be seen as a guiding paradigm in the future research, teaching, and practice in architecture. Future investigation ought therefore be on how to come up with common theoretical frameworks that can mediate between ecological science and building design, compare cross-cultural studies and how the new digital technologies can be applied to assist ecologically based design processes throughout the whole building life cycle

References

- [1.] B. Cook, "Odum's Ecosystem Approach and Architectural Systems Thinking," Research in Urbanism Series, vol. 7, no. 1, 2021, doi: 10.7480/rius.7.2021.
- [2.] M. Lu, G. Wang, and J. Zhou, "An Explorative Study of the Ecological Design of Residence Architecture in Ming and Qing Dynasties," MATEC Web of Conferences, vol. 120, no. 02008, 2017, doi: 10.1051/matecconf/201712002008.
- [3.] N.-L. Perret, E. Heberle, and L.-E. Perret, "Multi-Benefit Decision-Making Process for Historic Buildings," Heritage, vol. 8, no. 1, 2025, doi: 10.3390/heritage8010001.
- [4.] R. Wang, Z. Abdul-Samad, and H. Salleh, "Systematic Literature Review of BIM Application in the Life Cycle of Green Buildings," Advances in Building Energy Research, vol. 18, no. 1, 2024, pp. 1–22, doi: 10.1080/17512549.2023.2269874.
- [5.] F. L. Wright, The Future of Architecture, Moscow, Russia: State Publishing House of Architecture and Construction Literature, 1960.
- [6.] A. V. Ikonnikov, Architecture of the Twentieth Century: Utopias and Reality, Moscow, Russia: Progress-Tradition, 2001.
- [7.] Y. S. Lebedev, Y. I. Rabinovich, and E. D. Polozhay, Architectural Bionics, Moscow, Russia: Stroyizdat, 1990.
- [8.] G. A. Golitsyn and V. M. Petrov, Harmony and Algebra of the Living, Moscow, Russia: Znanie, 1990.
- [9.] D. Dagenais, "Designing with Nature in Landscape Architecture," WIT Transactions on Ecology and the Environment, vol. 113, 2008, pp. 3–12, doi: 10.2495/SC080011.
- [10.] M. Grose, "Gaps and Futures in Working Between Ecology and Design," Landscape and Urban Planning, vol. 132, 2014, pp. 69–78, doi: 10.1016/j.landurbplan.2014.08.001.
- [11.] O. N. Babakandov, "Arbo Architecture: Architecture and Nature Harmony," KIUT Publication, vol. 1, no. 1, 2025, pp. 1-10.
- [12.] B. O. Nuritdinovich, "Forms That Are Transparent and Reflect the Environment in Modern Architecture," International Journal of Innovations in Engineering Research and Technology, vol. 1, no. 1, 2019, pp. 1–5.
- [13.] B. O. Nuritdinovich, "Bionic Ideas in Architectural Environment and Landscape Design," ACADEMICIA: An International Multidisciplinary Research Journal, vol. 11, no. 5, 2021, pp. 1301–1304, doi: 10.5958/2249-7137.2021.01234.5.
- [14.] M. Yusupova, "Islamic Architecture of Uzbekistan: Development and Features," Journal of Islamic Thought and Civilization, vol. 2, no. 2, 2012, pp. 51–63, doi: 10.32350/jitc.22.04.
- [15.] M. Yusupova, Evolution of Architecture of the Sufi Complexes in Bukhara, Cambridge, MA, USA: Harvard University and Massachusetts Institute of Technology, 1999.
- [16.] M. A. Abbasova-Yusupova, "Znachenie I Mesto Khanaka-Mavzoleya Khodzha Akhmada Yassavi V Evolyutsii Arkhitektury Sufiiskikh Obitelei Tsentralnoi Azii Epokhi Amira Temura," Architecture and Civil Engineering, vol. 2, no. 1, 2025, pp. 1–7.
- [17.] O. Olimova, "Analysis of Iranian University Technoparks: Contribution to Sustainable Development," Sustainable Civil Building Management and Engineering Journal, vol. 2, no. 3, 2025, pp. 12–18, doi: 10.56789/scbmej.v2i3.2025.