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General Background: Wavelet approximations are fundamental in numerical analysis and
signal processing, with classical orthogonal polynomials like Jacobi and Chebyshev serving as
key tools due to their strong approximation properties. Specific Background: The use of
Chebyshev wavelets has been extended through generalized polynomial frameworks, such as
Koornwinder’s generalization of Jacobi polynomials, offering more flexibility for function
approximation on finite intervals. Knowledge Gap: Despite existing wavelet frameworks, the
integration of generalized Jacobi and Chebyshev structures into a unified wavelet
approximation scheme remains underexplored. Aims: This study introduces the Generalized
Jacobi Chebyshev Wavelet (GJCW) approximation, establishing its theoretical foundations and
demonstrating convergence and approximation capabilities. Results: It is shown that for a
uniformly bounded function expanded in the GJCW basis, the partial sums yield both
convergent and best uniform polynomial approximations. Novelty: The formulation of a new
wavelet approximation based on a hybrid of generalized Jacobi and Chebyshev polynomials
constitutes a novel contribution, supported by rigorous recurrence relations and
multiresolution analysis. Implications: This work enhances the theoretical landscape of
wavelet-based function approximation, with potential applications in computational
mathematics, signal analysis, and numerical solutions of differential equations.

Highlight :

e Wavelet Construction: The paper defines and constructs generalized Jacobi Chebyshev
wavelets using orthogonal polynomials.

e Approximation Theory: It proves that if the wavelet series converges, then a uniform
best polynomial approximation exists.

e Multiresolution Framework: The approach is grounded in Mallat’s multiresolution

analysis, enabling efficient function approximation.

Keywords : Jacobi Polynomials, Chebyshev Wavelets, Multiresolution Analysis, Polynomial
Approximation, Orthonormal Basis

INTRODUCTION

Jacobi polynomials P n™(a,B) (x) constitute a category of classical orthogonal polynomials. They are
orthogonal about the weight (1-x)"~« (1+x)”p on the interval [-1,1]. . We have P n”((«a,B)) (x)
Chebyshev polynomials with |x|<1.
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Jacobi Polynomial
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Figure 1.

also for n=4,5,[]
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Figure 2.

The Jacobi polynomials are generated by the three-term recurrence relation, for scalars
a_n”((o,p)),b_n"((a,p)) and , c_n"((a,B)),

Pﬂ':ff:] (x:] — [:aflﬁ.-.lg:]x _ E}?E“Jﬂjjpﬂ(ﬁ:ﬁj Ex:] _ C?EIL.IEJ Péff:] (x:] no 1_.

Figure 3.

where

PPy = 1 B Py = (et B+ Dx+ (e - B,

Figure 4.

also
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Figure 5.

The Jacobi polynomials y=P n”"((a,B)) (x) solve the linear second-order differential equation

(I-xBy"+[f—-a—(a+F+x]y +nint+ta+f+ Ly=10

Figure 6.

A. Jacobi polynomials
Theorem 1.1 There are scalars a 0™ ((«,B)),a 17~ ((o,B)),[0,a n”™((c,B))ER such that
P n”((o,B)) x)=2_(m=0)"n§ a_(n,m)"((a,p)) X" m.

Proof. We use mathematical induction.

For this
P_07((a,B)) (x)=1,
P 17((o.B)) x)=1/2(a+B+2)x+1/2(ax-B).
The hypothesis of mathematical induction:

Suppose for 0=sk<n , we have

P':'x-l.lg:ll:x:l — Em . C':'x-'.lgjx

Therefore
(u,ﬁj r [y
B (x) = B3 o R am
and
':'x-'.lgj e [0y
PP (x) = T ol am,
Figure 7.

The rule of mathematical induction:
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For scalars a n”((c,B)),b n™((e,B)) and ¢ n”™((a,B))
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Figure 8.

Theorem 1.2

Let PE“”E:'(J.:) =0 r:r,fm_f) M be a representation of Jacobi polynotnials. Then The
following conditions are satizfying

1 @oim “E forall m = n,
iy (m— lj[m + Ejan,mw (F—aim+ 1jf1ﬂm+1 [-mim— 1L —max+ 5+
Ej+n(n+a¢+,f3+lj] —Dfnrallﬂimin
FProof Guppose y = P‘E ”E:'(xj o af&fj M then
y' = g s maiBlam-1 - gl (4 1yaiid) gm
¥ = T mim— 1):1':"‘”93' m-Z = ¥Z (4 L(m+ Dane) k™,

We put in ghove equatmn we have

l1—2 Tl -1
) an _ EILE:I _
Zm(m + 1y0m + 2)aP x Zm_zm(m el xm 4 (g .:.:)Z

+1j::r,mm+1x —[[a+,’3‘+2jz x trintat+f

+ 1) Z aﬂ:mxm =10,
=0

it followes that
—(m = 1)(m + Dagmy, — (B~ a)im+ Dagh,,
+[—m(m -—-mea+tf++nntet+f+ 1)]::mexm =0

Figure 9.

B. Generalized Jacobi Chebyshev Wavelets

4/10



Indonesian Journal of Innovation Studies
Vol. 26 No. 3 (2025): July
DOI: 10.21070/ijins.v26i3.1457

Let w>—-1F>—-1M =0 and NV = 0 Koornwander in [12] it 15 demonstrated that the

generali sed Jacohi polynommals | Pﬂ(mﬁmm

plEAM oy = PR 4 gt () + WESP () + MESS (0, m= 0,12, .,
where

(%)} e can be written as

Wiy = REF () = S8 x) = 0,
and for v = 12,3, -,
{?l:'xdg:'[:xj — (B+28ln—q (6+5+2)p—y w [ﬂ-l:ﬂ-'l‘ i+ ‘8 + 1:|Pﬂ|:'x-'.lg:|[:x:l _ EJS + 1:|[:x _

i (o4 1!
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YD (m) = BRI o Infn a4 f+ DBV (@) - (@4 D(x +
DR (1],
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5, PPy — *Rnt+o+F+ 1R (x)—{(f+ Li(x— 1+ (x+

D(x + DIDR (5,
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Figure 10.

Proposition 2.1 The generalized Jacobi polynorial s Ji'J‘,?,L'I”E ol (%) ave generated by the

three-term recurvence relation, o scalars d_r'ia”g M, ETE“”E M and f;l(mﬁ A Jrnz=l

(63,00 (02,0000 (6,8 M) o (080000 BT DY 3 (6,8
Pl (x) = (d, x— e, 1B (x)— f, F o (x).

In the following table, we define generalized Chebyshevr wavelets. (see [2, 4, 7, 8, 5,
10,11,15])
Suppoze k € N (degree of multiresolution), m = Oon= 1.2, ,2¥

[241 _ o, 8.08.08) a-1 1
lpéif”ﬂj[:t:] = { T.Pm Ezkt —-2n+ 1)) £= [z‘f'“ zlt-1].

Q eiher9wice

A function f € IF[-1.1) is expanded by generalized Chebyshev wavelets series as
E oo .
f() = B2lo Tinco Cam P (2D,
where
1 a )
Cam = 23 RS 0w (e,

and @ 5 i the weight function of (o, 5. 0, N generaliized Chebyshev polynormial s Also

TLiAM
1 (oe 8.0 1) (o8 0400 _ plog.0dn
.vr_j_ |LIJﬂ_,ﬂ"|_ Etjlzwmm Etjdt - I"ﬂ_.'m !
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Figure 11.

It is necessary to study multiresolution analysis and Mallat’s Theorem for wavelet approximation.

Definition 2.1 Multiresolution Analysis: An MRA with scaling function ¢ constitutes a
collection of closed subspaces

Viliez of LE(R), such that

(13 ¥; € Yoy

(i) fix) €V &= F2x) € Viyqs

() UV, = F(R).

(iv) N ¥; = 0;

() There esists a function ¢ € ¥, such that the collection {@(x— &) & € £} 152 Fiess
hasis of ¥,.

Figure 12.

The series of wavelet subspaces W, of L2(R) is such that V; L W, for allf and Vi, =
V. @ W Closure of @5 W, isdensein I2(R) for I2 norm.

Figure 13.

We now present Mallat’s theorem, which ensures that in the context of an orthogonal
multiresolution analysis (MRA), an orthonormal basis exists for L™2 (R) exists. These basis
functions are essential in wavelet theory, facilitating the development of sophisticated
computational algorithms.

Lemma 2.1 (Mallat's Theorem) In the context of an orthogonal multiresolution analysis (MRA)
characterised by a scaling function ¢, a corresponding wavelet exists yeL”™2 (R) such that for
each jeZ , the family {y _(j,k) } (k€Z) is an orthonormal basis for W_j . Hence the family {y_(j,k)
} (k€Z) is an orthonormal basis for L™2 (R) .

Definition 2.2 (i) Let family be an orthonormal basis for L~2 (R) and P _n (f) the orthogonal
projection of L~2 ([-1,1]) ontoV_n . Then

P_n (H)=3_(-»)"efi<f,y_(nk)>y_(nk),n=1,2,3,]
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(113 The wawelet approzimation of the Chebyshey polynomial iz defined by
Eo(f) =l f- Bulf) Io= [2, |F (- Ba()(8)] Pkt =
e, ocl@(n))is asmall function.

Theorem 2.1 Let f = LE([— L1]) be a uniformly bounded fimction and

FE) = D22, Ty b WanB ™04y e expanded in terms of generalized Chelbyshev
wavel etzand the series Eﬂ=n oo | Eaml zLEff;T‘me be convergent. Then generalized Chebyshew
wavel et approzimation f, for every M izthe partial s

('Iaﬁaf‘f iy (52 04 1)
w0 (g = T TR LS (0),
and
SR P (o000 1
Ez“:m—iin = GEEE'E.:D M= Lﬂ_,ﬂ"l_ |E7L.m|zjzj'
Figure 14.
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o1 lf) = (T s T |Eam L )20

Figure 15.

Definition 2.3 Suppose f€eL.~2 [a,b] and P_n is a set of all polynomials of degree and smaller n.
If there exists a function q~*€P_n such that lim (n—«) P n (f)=0 , where P_n (f)=[inf[] (p€P _n )Ilf-
pll 2 . Then is called best uniform polynomial approximation to f on [a,b] .
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Figure 16.

LP' (a,ﬁ,m’ st

Theorem 2.2 Let f(f) = E.m o bm (£ be expanded in tevms of

generalized Chebyshev wavelets. If Eﬂ=n Yoo wml ELEE;ﬁMM is converge, then (o, f£.0M. W
generalized Chebyshev wavelet approximation Eou (8) of f is fi(£).

E oo (o8 M0
() = 00(T3 sy T ivn |l BLE 0y 3y,

Fraaf

175 2= [ T2 T g b B0 ()

_E Em . mmLP('IsﬁMﬂ) [:E:I|z Eﬁaﬁﬂﬂ)tt)dt

1T B L P ()2 g gy
=¥i,F :+1|tmm|sz1|WQﬁ“”j (2wl ™ () dt

< Y2 T rva Ve 200 [FEM 0 ()| 2 M0 ) e

S LYEL Tty Ll S L.

Therefore

I F = 08 1= (T8 T v N [P0,

LI (oc. 8 1) 2
Ez“:,t(n = ﬂ[:[:z-rzmn Em=t+1 |t-r1,m|z£"ﬂc:m jzj

Figure 17.
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Theorem 2.3 Let f(i) = E.m o Emm?*"':a"g“m[t) be expanded in terms of

zﬁﬂ;ﬁ”ﬂj

generalized Chabyshev wavelets. IF E.n:,j m=o | Ll is comverge, then generalized

Chebpshev wanelet approximation E e (8) of | is —f(£) and
1
Eaea(f) = 0((Tico Tmetea [taml L 2.

Froof
Ilf—(—fz) 12= 7, 1 T2 Thco tam ™0 ()| 2B 1) g
E . tmmlp(ﬂsﬁﬂ'ﬂ) (tjlz (mﬁ”ﬂj[:t:]dt
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Figure 18.

+
Corollary 2.2 Let f(£) = ¥ory Yoy tom PP 07 (1) be expanded in terms of

z L(mﬂ LAy

generalized Chebyshav wavelats If Eﬁin m=o | Eoml is comearge, then unifbrm bast

polynowial appyvoximation of fis f,(£).

Corollary 2.3 Zet f(£) = ¥ory Yoy tom PP 07 (4) be expanded in terms of

generalized Chebyshev wavelets. If E.ﬁin o | Eaml szfﬁMm is converge, then uniform best

polynowial aperoximation of £ is — (€.

Figure 19.
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