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General Background: Wavelet approximations are fundamental in numerical analysis and
signal processing, with classical orthogonal polynomials like Jacobi and Chebyshev serving as
key tools due to their strong approximation properties. Specific Background: The use of
Chebyshev wavelets has been extended through generalized polynomial frameworks, such as
Koornwinder’s generalization of Jacobi polynomials, offering more flexibility for function
approximation on finite intervals. Knowledge Gap: Despite existing wavelet frameworks, the
integration of generalized Jacobi and Chebyshev structures into a unified wavelet
approximation scheme remains underexplored. Aims: This study introduces the Generalized
Jacobi Chebyshev Wavelet (GJCW) approximation, establishing its theoretical foundations and
demonstrating convergence and approximation capabilities. Results: It is shown that for a
uniformly bounded function expanded in the GJCW basis, the partial sums yield both
convergent and best uniform polynomial approximations. Novelty: The formulation of a new
wavelet approximation based on a hybrid of generalized Jacobi and Chebyshev polynomials
constitutes a novel contribution, supported by rigorous recurrence relations and
multiresolution analysis. Implications: This work enhances the theoretical landscape of
wavelet-based function approximation, with potential applications in computational
mathematics, signal analysis, and numerical solutions of differential equations.

Highlight :

Wavelet Construction: The paper defines and constructs generalized Jacobi Chebyshev
wavelets using orthogonal polynomials.

Approximation Theory: It proves that if the wavelet series converges, then a uniform
best polynomial approximation exists.

Multiresolution Framework: The approach is grounded in Mallat’s multiresolution
analysis, enabling efficient function approximation.

Keywords : Jacobi Polynomials, Chebyshev Wavelets, Multiresolution Analysis, Polynomial
Approximation, Orthonormal Basis

  INTRODUCTION  

Jacobi polynomials P_n^(α,β) (x) constitute a category of classical orthogonal polynomials. They are
orthogonal about the weight (1-x)^α (1+x)^β on the interval [-1,1]. . We have P_n^((α,β)) (x)
Chebyshev polynomials with |x|≤1.
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Figure 1.   

also for n=4,5,⋯

 

  

Figure 2.   

The Jacobi polynomials are generated by the three-term recurrence relation, for scalars
a_n^((α,β)),b_n^((α,β)) and , c_n^((α,β)), 

 

  

Figure 3.   

where

 

  

Figure 4.   

also
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Figure 5.   

The Jacobi polynomials y=P_n^((α,β)) (x) solve the linear second-order differential equation

 

  

Figure 6.   

  A. Jacobi polynomials  

  Theorem 1.1  There are scalars a_0^((α,β)),a_1^((α,β)),⋯,a_n^((α,β))∈R  such that  

  P_n^((α,β)) (x)=∑_(m=0)^n▒‍ a_(n,m)^((α,β)) x^m.  

Proof. We use mathematical induction.

For this

  P_0^((α,β)) (x)=1,  

  P_1^((α,β)) (x)=1/2(α+β+2)x+1/2(α-β).  

   The hypothesis of mathematical induction: 

Suppose for 0≤k<n , we have

 

  

Figure 7.   

   The rule of mathematical induction: 
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For scalars a_n^((α,β)),b_n^((α,β)) and c_n^((α,β))

 

  

Figure 8.   

  Theorem 1.2  

 

  

Figure 9.   

  B. Generalized Jacobi Chebyshev Wavelets  
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Figure 10.   

 

  

                             5 / 10



Indonesian Journal of Innovation Studies
Vol. 26 No. 3 (2025): July
DOI: 10.21070/ijins.v26i3.1457

Figure 11.   

It is necessary to study multiresolution analysis and Mallat’s Theorem for wavelet approximation.

  Definition 2.1 Multiresolution Analysis: An MRA with scaling function ϕ constitutes a
collection of closed subspaces 

 

  

Figure 12.   

 

  

Figure 13.   

We now present Mallat’s theorem, which ensures that in the context of an orthogonal
multiresolution analysis (MRA), an orthonormal basis exists for L^2 (R) exists. These basis
functions are essential in wavelet theory, facilitating the development of sophisticated
computational algorithms.

Lemma 2.1 (Mallat's Theorem) In the context of an orthogonal multiresolution analysis (MRA)
characterised by a scaling function ϕ, a corresponding wavelet exists ψ∈L^2 (R) such that for
each j∈Z , the family {ψ_(j,k) }_(k∈Z) is an orthonormal basis for W_j . Hence the family {ψ_(j,k)
}_(k∈Z) is an orthonormal basis for L^2 (R) . 

  Definition 2.2  (i) Let family  be an orthonormal basis for L^2 (R)  and  P_n (f)  the orthogonal
projection of L^2 ([-1,1])  onto V_n  . Then  

  P_n (f)=∑_(-∞)^∞▒‍<f,ψ_(n,k)>ψ_(n,k),n=1,2,3,⋯  

 

                             6 / 10



Indonesian Journal of Innovation Studies
Vol. 26 No. 3 (2025): July
DOI: 10.21070/ijins.v26i3.1457

  

Figure 14.   

 

  

Figure 15.   

  Definition 2.3  Suppose f∈L^2 [a,b]  and P_n  is a set of all polynomials of degree  and smaller n.
If there exists a function q^*∈P_n  such that lim_(n→∞) P_n (f)=0  , where P_n (f)=〖inf〗_(p∈P_n )∥f-
p∥_2  . Then  is called best uniform polynomial approximation to f  on [a,b]  .  
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Figure 16.   

 

  

Figure 17.   
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Figure 18.   

 

  

Figure 19.   
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